
Monkey::Patch::Action(3pm) UserContributed Perl Documentation Monkey::Patch::Action(3pm)

NAME
Monkey::Patch::Action − Wrap/add/replace/delete subs from other package (with restore)

VERSION
version 0.04

SYNOPSIS
use Monkey::Patch::Action qw(patch_package);

package Foo;
sub sub1 { s ay "Foo's sub1" }
sub sub2 { s ay "Foo's sub2, args=", join(",", @_) }
sub meth1 { my $self = shift; say "Foo's meth1" }

package Bar;
our @ISA = qw(Foo);

package main;
my $h; # handle object
my $foo = Foo−>new;
my $bar = Bar−>new;

r eplacing a subroutine
$h = patch_package('Foo', 'sub1', 'replace', sub { "qux" });
Foo::sub1(); # says "qux"
undef $h;
Foo::sub1(); # says "Foo's sub1"

adding a subroutine
$h = patch_package('Foo', 'sub3', 'add', sub { "qux" });
Foo::sub3(); # says "qux"
undef $h;
Foo::sub3(); # dies

deleting a subroutine
$h = patch_package('Foo', 'sub2', 'delete');
Foo::sub2(); # dies
undef $h;
Foo::sub2(); # says "Foo's sub2, args="

wrapping a subroutine
$h = patch_package('Foo', 'sub2', 'wrap',

sub {
my $ctx = shift;
say "wrapping $ctx−>{package}::$ctx−>{subname}";
$ctx−>{orig}−>(@_);

}
);
Foo::sub2(1,2,3); # says "wrapping Foo::sub2" then "Foo's sub2, args=1,2,3"
undef $h;
Foo::sub2(1,2,3); # says "Foo's sub2, args=1,2,3"

s tacking patches (note: can actually be unapplied in random order)
my ($h2, $h3);
$h = patch_package('Foo', 'sub1', 'replace', sub { "qux" });
Foo::sub1(); # says "qux"
$h2 = patch_package('Foo', 'sub1', 'delete');
Foo::sub1(); # dies
$h3 = patch_package('Foo', 'sub1', 'replace', sub { "quux" });
Foo::sub1(); # says "quux"

perl v5.20.2 2015-06-10 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Monkey::Patch::Action

Monkey::Patch::Action(3pm) UserContributed Perl Documentation Monkey::Patch::Action(3pm)

undef $h3;
Foo::sub1(); # dies
undef $h2;
Foo::sub1(); # says "qux"
undef $h;
Foo::sub1(); # says "Foo's sub1"

DESCRIPTION
Monkey-patching is the act of modifying a package at runtime: adding a subroutine/method,
replacing/deleting/wrapping another, etc. Perl makes it easy to do that, for example:

add a subroutine
*{"Target::sub1"} = sub { ... };

another way, can be done from any file
package Target;
sub sub2 { ... }

delete a subroutine
undef *{"Target::sub3"};

This module makes things even easier by helping you apply a stack of patches and unapply them later
in flexible order.

FUNCTIONS
patch_package($package, $subname , $action , $code , @extra) => HANDLE

Patch$package ’s subroutine named$subname . $action is either:

• wrap

$subname must already exist.code is required.

Your code receives a context hash as its first argument, followed by any arguments the subroutine
would have normally gotten. Context hash contains:orig (the original subroutine that is being
wrapped),subname , package , extra .

• add

subname must not already exist.code is required.

• replace

subname must already exist.code is required.

• add_or_replace

code is required.

• delete

code is not needed.

Die on error.

Function returns a handle object. As soon as you lose the value of the handle (by calling in void
context, assigning over the variable, undeffing the variable, letting it go out of scope, etc), the patch is
unapplied.

Patches can be unapplied in random order, but unapplying a patch where the next patch is a wrapper
can lead to an error. Example: first patch (P1) adds a subroutine and second patch (P2) wraps it. If P1 is
unapplied before P2, the subroutine is now no longer there, and P2 no longer works. Unapplying P1
after P2 works, of course.

FA Q
Differences with Monkey::Patch?

This module is based on the wonderful Monkey::Patch by Paul Driver. The differences are:

• This module adds the ability to add/replace/delete subroutines instead of just wrapping them.

• Interface topatch_package() is slightly different (see previous item for the cause).

perl v5.20.2 2015-06-10 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Monkey::Patch::Action

Monkey::Patch::Action(3pm) UserContributed Perl Documentation Monkey::Patch::Action(3pm)

• Using this module, the wrapper receives a context hash instead of just the original subroutine.

• Monkey::Patch adds convenience for patching classes and objects. To keep things simple, no such
convenience is currently provided by this module.patch_package() *can* patch classes and
objects as well (see the nextFA Q entry).

How to patch classes and objects?
Patching a class is basically the same as patching any other package, since Perl implements a class with
a package. One thing to note is that to call a parent’s method inside your wrapper code, instead of:

$self−>SUPER::methname(...)

you need to do something like:

use SUPER;
SUPER::find_parent(ref($self), 'methname')−>methname(...)

Patching an object is also basically patching a class/package, because Perl does not have per-object
method like Ruby. But if you just want to provide a modified behavior for a certain object only, you can
do something like:

patch_package($package, $methname, 'wrap',
sub {

my $ctx = shift;
my $self = shift;

my $obj = $ctx−>{extra}[0];
no warnings 'numeric';
if ($obj == $self) {

do s tuff
}
$ctx−>{orig}−>(@_);

}, $obj);

SEE ALSO
Monkey::Patch

AUTHOR
Steven Haryanto <stevenharyanto AT gmail DOT com>

COPYRIGHT AND LICENSE
This software is copyright (c) 2012 by Steven Haryanto.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.20.2 2015-06-10 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Monkey::Patch::Action

