
MooX::Struct(3pm) UserContributed Perl Documentation MooX::Struct(3pm)

NAME
MooX::Struct − make simple lightweight record−like structures that make sounds like cows

SYNOPSIS
use MooX::Struct

Point => [' x', 'y'],
Point3D => [−extends => ['Point'], 'z'],

;

my $origin = Point3D−>new(x => 0, y => 0, z => 0);

or...
my $origin = Point3D[0, 0, 0];

DESCRIPTION
MooX::Struct allows you to create cheap struct-like classes for your data using Moo.

While similar in spirit to MooseX::Struct and Class::Struct, MooX::Struct has a somewhat different
usage pattern. Rather than providing you with astruct keyword which can be used to define structs,
you define all the structs as part of theuse statement. This means they happen at compile time.

A struct is just an ‘‘anonymous’’ M oo class. MooX::Struct creates this class for you, and installs a
lexical alias for it in your namespace. Thus your module can create a ‘‘Point3D’’ struct, and some other
module can too, and they won’t interfere with each other. All struct classes inherit from MooX::Struct.

Arguments for MooX::Struct are key-value pairs, where keys are the struct names, and values are
arrayrefs.

use MooX::Struct
Person => [qw/ name address /],
Company => [qw/ name address registration_number /];

The elements in the array are the attributes for the struct (which will be created as read-only attributes),
however certain array elements are treated specially.

• As per the example in the ‘‘SYNOPSIS’’, −extends introduces a list of parent classes for the
struct. If not specified, then classes inherit from MooX::Struct itself.

Structs can inherit from other structs, or from normal classes. If inheriting from another struct,
then youmust define both in the sameuse statement. Inheritingfrom a non-struct class is
discouraged.

Not like this.
use MooX::Struct Point => ['x', 'y'];
use MooX::Struct Point3D => [−extends => ['Point'], 'z'];

Like this.
use MooX::Struct

Point => [' x', 'y'],
Point3D => [−extends => ['Point'], 'z'],

;

• Similarly −with consumes a list of roles.

• If an attribute name is followed by a coderef, this is installed as a method instead.

use MooX::Struct
Person => [

qw(name age sex),
greet => sub {

my $self = shift;
CORE::say "Hello ", $self−>name;

},
];

But if you’re defining methods for your structs, then you’ve possibly missed the point of them.

perl v5.24.1 2017-02-01 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooX::Struct

MooX::Struct(3pm) UserContributed Perl Documentation MooX::Struct(3pm)

• If an attribute name is followed by an arrayref, these are used to set the options for the attribute.
For example:

use MooX::Struct
Person => [n ame => [is => 'ro', required => 1]];

Using theinit_arg option would probably break stuff. Don’t do that.

• Attribute names may be ‘‘decorated’’ w ith prefix and postfix ‘‘sigils’’. The prefix sigils of@and%
specify that the attribute isa arrayref or hashref respectively. (Blessed arrayrefs and hashrefs are
accepted; as are objects which overload @{} and %{} .) The prefix sigil$ specifies that the
attribute value must not be an unblessed arrayref or hashref.The prefix sigil+ indicates the
attribute is a number, and provides a default value of 0, unless the attribute is required. The postfix
sigil ! specifies that the attribute is required.

use MooX::Struct
Person => [qw($name! @children)];

Person−>new(); # dies, name is required
Person−>new(# dies, children should be arrayref

name => 'Bob',
children => 2,

);

Prior to the key-value list, some additional flags can be given. These begin with hyphens. The flag−rw
indicates that attributes should be read-write rather than read-only.

use MooX::Struct −rw,
Person => [

qw(name age sex),
greet => sub {

my $self = shift;
CORE::say "Hello ", $self−>name;

},
];

The −retain flag can be used to indicate that MooX::Struct shouldnot use namespace::clean to
enforce lexicalness on your struct class aliases.

Flags−trace and−deparse may be of use debugging.

Instantiating Structs
There are two supported methods of instatiating structs. You can use a traditional class-like constructor
with named parameters:

my $point = Point−>new(x => 1, y => 2);

Or you can use the abbreviated syntax with positional parameters:

my $point = Point[1, 2];

If you know about Moo and peek around in the source code for this module, then I’m sure you can
figure out additional ways to instantiate them, but the above are the only supported two.

When inheritance or roles have been used, it might not always be clear what order the positional
parameters come in (though see the documentation for theFIELDS below), so the traditional class-like
style may be preferred.

Methods
Structs are objects and thus have methods. You can define your own methods as described above.
MooX::Struct’s built-in methods will always obey the convention of being inALL CAPS (except in the
case of_data_printer). By using lower-case letters to name your own methods, you can avoid
naming collisions.

The following methods are currently defined. Additionally all the standard Perl (isa , can , etc) and
Moo (new, does , etc) methods are available.

perl v5.24.1 2017-02-01 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooX::Struct

MooX::Struct(3pm) UserContributed Perl Documentation MooX::Struct(3pm)

OBJECT_ID
Returns a unique identifier for the object.

FIELDS
Returns a list of fields associated with the object. For thePoint3D struct in theSYNPOSIS,this
would be'x', 'y', 'z' .

The order the fields are returned in is equal to the order they must be supplied for the positional
constructor.

Attributes inherited from roles, or from non-struct base classes are not included inFIELDS , and
thus cannot be used in the positional constructor.

TYPE
Returns the type name of the struct, e.g.'Point3D' .

TO_HASH
Returns a reference to an unblessed hash where the object’s fields are the keys and the object’s
values are the hash values.

TO_ARRAY
Returns a reference to an unblessed array where the object’s values are the array items, in the same
order as listed byFIELDS .

TO_STRING
Joins TO_ARRAYwith whitespace. This is not necessarily a brilliant stringification, but easy
enough to overload:

use MooX::Struct
Point => [

qw(x y),
TO_STRING => sub {

sprintf "(%d, %d)"), $_[0]−>x, $_[0]−>y;
},

]
;

CLONE
Creates a shallow clone of the object.

EXTEND
An exverimental feature.

Extend a class or object with additional attributes, methods, etc. This method takes almost all the
same arguments asuse MooX::Struct , albeit with some slight differences.

use MooX::Struct Point => [qw/ +x +y /];
my $point = Point[2, 3];
$point−>EXTEND(−rw, q/+z/); # extend an object
$point−>can('z'); # true

my $new_class = Point−>EXTEND('+z'); # extend a class
my $point_3d = $new_class−>new(x => 1, y => 2, z => 3);
$point_3d−>TYPE; # Point !

my $point_4d = $new_class−>EXTEND(\"Point4D", '+t');
$point_4d−>TYPE; # Point4D

my $origin = Point[]−>EXTEND(−with => [qw/ Math::Role::Origin /]);

This feature has been included mostly because it’s easy to implement on top of the existing code
for processinguse MooX::Struct . Some subsets of this functionality are sane, such as the
ability to add traits to an object.Others (like the ability to add a new uninitialized, read-only
attribute to an existing object) are less sensible.

perl v5.24.1 2017-02-01 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooX::Struct

MooX::Struct(3pm) UserContributed Perl Documentation MooX::Struct(3pm)

BUILDARGS
Moo internal fu.

_data_printer
Automatic pretty printing with Data::Printer.

use Data::Printer;
use MooX::Struct Point => [qw/ +x +y /];
my $origin = Point[];
p $origin;

Use Data::Printer 0.36 or above please.

With the exception ofFIELDS andTYPE, any of these can be overridden using the standard way of
specifying methods for structs.

Overloading
MooX::Struct overloads stringification and array dereferencing. Objects always evaluate to true in a
boolean context. (Even if they stringify to the empty string.)

CAVEATS
Because you only get an alias for the struct class, you need to be careful with some idioms:

my $point = Point3D−>new(x => 1, y => 2, z => 3);
$point−>isa("Point3D"); # false!
$point−>isa(Point3D); # t rue

my %args = (...);
my $class = exists $args{z} ? "Point3D" : "Point"; # wrong!
$class−>new(%args);

my $class = exists $args{z} ? Point3D : Point ; # right
$class−>new(%args);

BUGS
Please report any bugs to <http://rt.cpan.org/Dist/Display.html?Queue=MooX−Struct>.

SEE ALSO
Moo, MooX::Struct::Util, MooseX::Struct, Class::Struct.

AUTHOR
Toby Inkster <tobyink AT cpan DOT org>.

COPYRIGHT AND LICENCE
This software is copyright (c) 2012−2013, 2017 by Toby Inkster.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

DISCLAIMER OF WARRANTIES
THIS PACKAGE IS PROVIDED ‘‘A S IS’’ A ND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

perl v5.24.1 2017-02-01 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooX::Struct

