
MooseX::Daemonize::Core(3pm) UserContributed Perl Documentation MooseX::Daemonize::Core(3pm)

NAME
MooseX::Daemonize::Core − A Role with the core daemonization features

VERSION
version 0.21

SYNOPSIS
package My::Daemon;
use Moose;

with 'MooseX::Daemonize::Core';

sub start {
my $self = shift;
daemonize me ...
$self−>daemonize;
r eturn from the parent,...
return unless $self−>is_daemon;
but continue on in the child (daemon)

}

DESCRIPTION
This is the basic daemonization Role, it provides a few methods (see below) and the minimum features
needed to properly daemonize your code.

Important Notes
None of the methods in this role will exit the parent process for you, it only forks and detaches your
child (daemon) process. It is your responsibility to exit the parent process in some way.

There is noPID or PID file management in this role, that is your responsibility (see some of the other
roles in this distro for that).

ATTRIBUTES
is_daemon (is =rw, isa => Bool)>

This attribute is used to signal if we are within the daemon process or not.

no_double_fork (is =rw, isa => Bool)>
Setting this attribute to true will cause this method to not perform the typical double-fork, which is
extra added protection from your process accidentally acquiring a controlling terminal. More
information can be found above, and by Googling ‘‘double fork daemonize’’.

If you the double-fork behavior off, you might want to enable theignore_zombies.

ignore_zombies (is =rw, isa => Bool)>
Setting this attribute to a true value will result in setting the$SIG{CHLD} handler toIGNORE.
This tells perl to clean up zombie processes. By default, and for the most part you don’t needit,
only when you turn off the double fork behavior (with theno_double_forkattribute) do you
sometimes want this behavior.

dont_close_all_files (is =rw, isa => Bool)>
Setting this attribute to true will cause it to skip closing all the filehandles. This is useful if you are
opening things like sockets and such in the pre-fork.

METHODS
daemon_fork (?%options)

This forks off the child process to be daemonized. Just as with the built in fork, it returns the child
pid to the parent process, 0 to the child process. It will also set the is_daemon flag appropriately.

The %options argument remains for backwards compatibility, but it is suggested that you use
the attributes listed above instead.

daemon_detach (?%options)
This detaches the new child process from the terminal by doing the following things.

The %options argument remains for backwards compatibility, but it is suggested that you use
the attributes listed above instead.

perl v5.22.1 2016-02-20 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Daemonize::Core

MooseX::Daemonize::Core(3pm) UserContributed Perl Documentation MooseX::Daemonize::Core(3pm)

Becomes a session leader
This detaches the program from the controlling terminal, it is accomplished by calling
POSIX::setsid .

Performing the double-fork
See below for information on how to change this part of the process.

Changes the current working directory to ‘‘/’’
This is standard daemon behavior, if you want a different working directory then simply
change it later in your daemons code.

Clears the file creation mask.
Closes all open file descriptors.

See thedont_close_all_filesattribute for information on how to change this part of the
process.

ReopenSTDERR, STDOUT & STDINto /dev/null
This behavior can be controlled slightly though theMX_DAEMON_STDERRand
MX_DAEMON_STDOUTenvironment variables. It will look for a filename in either of these
variables and redirectSTDOUTand/orSTDERRto those files. This is useful for debugging
and/or testing purposes.

NOTE

If called from within the parent process (theis_daemon flag is set to false), this method
will simply return and do nothing.

daemonize (?%options)
This will simply calldaemon_fork followed bydaemon_detach .

The %options argument remains for backwards compatibility, but it is suggested that you
use the attributes listed above instead.

meta()
Themeta() method from Class::MOP::Class

STUFF YOU SHOULD READ
Note about double fork

Taken from <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66012> in a comment
entitledThe second fork _is_ necessary by Jonathan Bartlett, it is not the definitive statement on
the issue, but it’s clear and well written enough so I decided to reproduce it here.

The first fork accomplishes two things − allow the shell to return,
and allow you to do a setsid().

The setsid() removes yourself from your controlling terminal. You
see, before, you were still listed as a job of your previous process,
and therefore the user might accidentally send you a signal. setsid()
gives you a new session, and removes the existing controlling terminal.

The problem is, you are now a session leader. As a session leader, if
you open a file descriptor that is a terminal, it will become your
controlling terminal (oops!). Therefore, the second fork makes you NOT
be a session leader. Only session leaders can acquire a controlling
terminal, so you can open up any file you wish without worrying that
it will make you a controlling terminal.

So − first fork − allow shell to return, and permit you to call setsid()

Second fork − prevent you from accidentally reacquiring a controlling
terminal.

That said, you don’t always want this to be the behavior, so you are free to specify otherwise using
theno_double_forkattribute.

perl v5.22.1 2016-02-20 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Daemonize::Core

MooseX::Daemonize::Core(3pm) UserContributed Perl Documentation MooseX::Daemonize::Core(3pm)

Note about zombies
Doing the double fork (see above) tends to get rid of your zombies since by the time you have
double forked your daemon process is then owned by the init process. However, sometimes the
double-fork is more than you really need, and you want to keep your daemon processes a little
closer to you. In this case you have to watch out for zombies, you can avoid then by just setting
the ignore_zombiesattribute (see above).

ENVIRONMENT VARIABLES
These variables are best just used for debugging and/or testing, but not used for actual logging. For that,
you should reopenSTDOUT/STDERRon your own.

MX_DAEMON_STDOUT
A filename to redirect the daemonSTDOUTto.

MX_DAEMON_STDERR
A filename to redirect the daemonSTDERRto.

DEPENDENCIES
Moose::Role,POSIX

INCOMPATIBILITIES
SEE ALSO

Proc::Daemon

This code is basedHEAVILY on Proc::Daemon, we originally depended on it, but we needed some
more flexibility, so instead we just stole the code.

COPYRIGHT AND LICENCE
Portions heavily borrowed from Proc::Daemon which is copyright Earl Hood.

SUPPORT
Bugs may be submitted through the RT bug tracker
<https://rt.cpan.org/Public/Dist/Display.html?Name=MooseX-Daemonize> (or
bug−MooseX−Daemonize AT rt DOT cpan DOT org <mailto:bug-MooseX-Daemonize AT rt DOT
cpan DOT org>).

There is also a mailing list available for users of this distribution, at
<http://lists.perl.org/list/moose.html>.

There is also an irc channel available for users of this distribution, at#moose on irc.perl.org
<irc://irc.perl.org/#moose>.

AUTHORS
• Stevan Little <stevan DOT little AT iinteractive DOT com>

• Chris Prather <chris AT prather DOT org>

COPYRIGHT AND LICENCE
This software is copyright (c) 2007 by Chris Prather.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.22.1 2016-02-20 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Daemonize::Core

