
MooseX::NonMoose(3pm) UserContributed Perl Documentation MooseX::NonMoose(3pm)

NAME
MooseX::NonMoose − easy subclassing of non−Moose classes

VERSION
version 0.26

SYNOPSIS
package Term::VT102::NBased;
use Moose;
use MooseX::NonMoose;
extends 'Term::VT102';

has [qw/x_base y_base/] => (
is => 'ro',
isa => 'Int',
default => 1,

);

around x => sub {
my $orig = shift;
my $self = shift;
$self−>$orig(@_) + $self−>x_base − 1;

};

. .. (wrap other methods)

no Moose;
no n eed to fiddle with inline_constructor here
_ _PACKAGE_ _−>meta−>make_immutable;

my $vt = Term::VT102::NBased−>new(x_base => 0, y_base => 0);

DESCRIPTION
MooseX::NonMoose allows for easily subclassing non-Moose classes with Moose, taking care of
the annoying details connected with doing this, such as setting up proper inheritance from
Moose::Object and installing (and inlining, atmake_immutable time) a constructor that makes sure
things like BUILD methods are called. It tries to be as non-intrusive as possible − when this module is
used, inheriting from non-Moose classes and inheriting from Moose classes should work identically,
aside from the few cav eats mentioned below. One of the goals of this module is that including it in a
Moose::Exporter−based package used across an entire application should be possible, without
interfering with classes that only inherit from Moose modules, or even classes that don’t inherit from
anything at all.

There are several ways to use this module. The most straightforward is to just use
MooseX::NonMoose; in your class; this should set up everything necessary for extending non-
Moose modules. MooseX::NonMoose::Meta::Role::Class and
MooseX::NonMoose::Meta::Role::Constructor can also be applied to your metaclasses manually, either
by passing a−traits option to your use Moose; line, or by applying them using
Moose::Util::MetaRole in a Moose::Exporter−based package. MooseX::NonMoose::Meta::Role::Class
is the part that provides the main functionality of this module; if you don’t care about inlining, this is
all you need to worry about. Applying MooseX::NonMoose::Meta::Role::Constructor as well will
provide an inlined constructor when you immutabilize your class.

MooseX::NonMoose allows you to manipulate the argument list that gets passed to the superclass
constructor by defining aFOREIGNBUILDARGSmethod. This is called with the same argument list as
the BUILDARGSmethod, but should return a list of arguments to pass to the superclass constructor.
This allows MooseX::NonMoose to support superclasses whose constructors would get confused by
the extra arguments that Moose requires (for attributes, etc.)

Not all non-Moose classes usenew as the name of their constructor. This module allows you to extend
these classes by explicitly stating which method is the constructor, during the call toextends . The
syntax looks like this:

perl v5.18.2 2014-02-25 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::NonMoose

MooseX::NonMoose(3pm) UserContributed Perl Documentation MooseX::NonMoose(3pm)

extends 'Foo' => { −constructor_name => 'create' };

similar to how you can already pass−version in theextends call in a similar way.

BUGS/CAVEATS
• The reference that the non-Moose class uses as its instance typemust match the instance type that

Moose is using. Moose’s default instance type is a hashref, but other modules exist to make Moose
use other instance types. MooseX::InsideOut is the most general solution − it should work with
any class. For globref-based classes in particular, MooseX::GlobRef will also allow Moose to
work. For more information, see the032−moosex−insideout and033−moosex−globref
tests bundled with this dist.

• Modifying your class’@ISAafter an initialextends call will potentially cause problems if any
of those new entries in the@ISA override the constructor. MooseX::NonMoose wraps the
nearestnew() method at the timeextends is called and will not see any othernew() methods
in the@ISAhierarchy.

• Completely overriding the constructor in a class usingMooseX::NonMoose (i.e. usingsub
new { ... }) currently doesn’t work, although using method modifiers on the constructor
should work identically to normal Moose classes.

Please report any bugs to GitHub Issues at <https://github.com/doy/moosex−nonmoose/issues>.

SEE ALSO
• ‘‘ How do I make non-Moose constructors work with Moose?’’ in M oose::Manual::FAQ

• MooseX::Alien

serves the same purpose, but with a radically different (and far more hackish) implementation.

SUPPORT
You can find this documentation for this module with the perldoc command.

perldoc MooseX::NonMoose

You can also look for information at:

• MetaCPAN

<https://metacpan.org/release/MooseX−NonMoose>

• Github

<https://github.com/doy/moosex−nonmoose>

• RT : CPAN’s request tracker

<http://rt.cpan.org/NoAuth/Bugs.html?Dist=MooseX−NonMoose>

• CPAN Ratings

<http://cpanratings.perl.org/d/MooseX−NonMoose>

AUTHOR
Jesse Luehrs <doy AT tozt DOT net>

COPYRIGHT AND LICENSE
This software is copyright (c) 2014 by Jesse Luehrs.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.18.2 2014-02-25 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::NonMoose

