Ubuntu 17.10 (Artful Aardvark)

E%[E
St
Ed

MooseX::Types(3pm)

NAME

MooseX::Types — Qanise your Moose types in libraries

VERSION
version 0.50

SYNOPSIS
Library Definition

package MyLibrary;

predeclare our own types
use MooseX:: Types —declare => [
qw(
Positivelnt
Negativelnt
ArrayRefOfPositivelnt

ArrayRefOfAtLeastThreeNegativelnts

LotsOflnnerConstraints
StrOrArrayRef
MyDateTime
)

I;

i mport builtin types
use MooseX::Types::Moose qw/Int HashRef/;

t ype definition.
subtype Positivelnt,
as Int,
where {$_>01},
message { "Int is not larger than 0" };

subtype Negativelnt,
as Int,
where {$_<0},
message { "Int is not smaller than 0" };

t ype coercion
coerce Positivelnt,
from Int,
via{l}
with parameterized constraints.

subtype ArrayRefOfPositivelnt,
as ArrayRef[Positivelnt];

subtype ArrayRefOfAtLeastThreeNegativelnts,
as ArrayRef[Negativelnt],
where { scalar(@$_) > 2 };

subtype LotsOflnnerConstraints,
as ArrayRef[ArrayRef[HashRef[Int]]];

with TypeConstraint Unions

subtype StrOrArrayRef,
as Str|ArrayRef;

class types

perl v5.24.1 2017-06-17

Use€Contributed Perl Documentation

man.m.sourcentral.org

MooseX::Types(3pm)

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Types

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

E%[E
St
Ed

MooseX::Types(3pm) UseContributed Perl Documentation MooseX::Types(3pm)

class_type 'DateTime’;
or b etter
class_type MyDateTime, { class => 'DateTime' };
coerce MyDateTime,
from HashRef,

via { DateTime—>new(%$) };

1

Usage

package Foo;
use Moose,
use MyLibrary qw(Positivelnt Negativelnt);

use the exported constants as type names

has 'bar’,
isa => Positivelnt,
is = W

has 'baz’,
isa => Negativelnt,
is = W

sub quux {

my ($self, $value);

t est the value
print "positive\n" if is_Positivelnt($value);
print "negative\n" if is_Negativelnt($value);

coerce the value, Negativelnt doesn't have a coercion
helper, since it didn't define any coercions.
$value = to_Positivelnt($value) or die "Cannot coerce”;

}

1

DESCRIPTION

The type system provided by Mooséeefively makes all of its builtin type global, as areyaypes you
declare with Moose. This means thaerg module that declares a type nanfeokitivelnt is
sharing the same type object. This can be a problem wHenredif parts of the code base want to use
the same name for different things.

This package lets you declare types using short namesehind the scenes it namespaces all your
type declarations, effegly prevent name clashes between packages.

This is done by creating a type library modules IMyApp::Types and then importing types from
that module into other modules.

As a side effect, the declaration mechanism allows you to write type names aerdsrgeally
function calls), which catches typos in names at compile time rather than run time.

This module also provides some helper functions for using Moose types outside afteattrib
declarations.

If you mix string-based names with types created by this module, it will,with a fev exceptions. If
you are declaring elass_type() orrole_type() within your type libraryor if you use a fully
qualified name likéMyApp::Foo"

perl v5.24.1 2017-06-17 2

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Types

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MooseX::Types(3pm) UseContributed Perl Documentation MooseX::Types(3pm)

LIBRAR Y DEFINITION
A MooseX::ypes is just a normal Perl module. Urlikoose itself, it does not instalke strict
anduse warnings in your class by default, so this is up to you.

The only thing a library is required to do is
use MooseX::Types —declare => \@types;

with @types being a list of types you wish to define in this librafis line will install a proper base

class in your package as well as the full set of handlers for your declared types. It will then hand
control over to Moose::Util:: TypeConstraintsmport method to gport the functions you will need to
declare your types.

If you want to use Moose’ built-in types (e.g. for subtyping) you will want to
use MooseX:: Types::Moose @types;

to import the helpers from the shipped MooseX::Types::Moose library which can export all types that
come with Moose.

You will have o define coercions for your types or your librargnit export a ‘to_$type’ coercion
helper for it.

Note that you currently cannot define types containingsince exporting would be a problem.

You dso dont need to usevarnings andstrict , since the definition of a library automatically
exports those.

LIBRAR Y USAGE
You can import the “type helpersdf a library byuse ing it with a list of types to import asgarments.
If you want all of them, use thall tag. For example:

use MyLibrary qall';
use MyOtherLibrary gw(TypeA TypeB);

MooseX::Types comes with a library of Moose’ built-in types called MooseX:: Types::Moose.

The exporting mechanism is, sincersion 0.5, implemented via a wrapper around Sub::Expditer
means you can do somethingelikis:

use MyLibrary TypeA =>{ —as => 'MyTypeA' },
TypeB =>{ —as => 'MyTypeB' };

TYPE HANDLER FUNCTIONS
$type
A constant with the name of your type. It contains the s/fudly qualified name. dkes no value, as all
constants.

is_S$type
This handler takes a value and tests if it is a valid value fostyye . It will return true or false.

to_$type
A handler that will tak a \alue and coerce it into thigtype . It will return a false value if the type
could not be coerced.

Important Note: This handler will only be exported for types that can do type coercion. This has the
advantage that a coercion to a type that has not defigembarctions will lead to a compile-time error.

WRAPPING A LIBRARY
You can define your own wrapper subclasses to manipulate the behaviour of a set of Xpoaty. e
Here is an example:

package MyWrapper;

use strict;

use MRO::Compat;

use base 'MooseX::Types::Wrapper';

sub coercion_export_generator {
my $class = shift;
my $code = $class—>next::method(@_);
return sub {

E#E
S
[E#%a% perivs.24.1 2017-06-17 3

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Types

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MooseX::Types(3pm) UseContributed Perl Documentation MooseX::Types(3pm)

my $value = $code—>(@_);
warn "Coercion returned undef!"

unless defined $value;
return $value;

}

1

This class wraps the coercion generator (éa@.Jnt()) and warns if a coercion returned an
undefined value. You can wrapydibrary with this:

package Foo;

use strict;

use MyWrapper MyLibrary => [qw(Foo Bar)],
Moose => [qw(StrInt)];

1

TheMoose library name is a special shortcut for MooseX::Types::Moose.

Generator methods you can werload
type_export_generato$short , $full)
Creates a closure returning the tygefoose::Meta:: TypeConstraint object.

check_export_generatddhort , $full , $undef_message)
This creates the closure used to test if a value is valid for this type.

coercion_export_generatéghort , $full , Sundef _message)
This is the closure that'ing coercions.

Provided Parameters
$short
The short, exported name of the type.

$full
The fully qualified name of this type as Moose knows it.

$undef_message
A message that will be thrown when type functionality is used but the type does not yet exist.

RECURSIVE SUBTYPES
As of version 0.08, Moose::Types has experimental support for Rexarbtypes. Thiwill allow:

subtype Tree() => as HashRef[Str|Tree];
Which validates things like:

{key=>'value'};

{key=>{subkeyl=>'value', subkey2=>'value'}}
And so on. This feature is weand there may be lurking bugs so ddpé draid to hunt me dan with
patches and test cases if yowd&ouble.

NOTES REGARDING TYPE UNIONS
MooseX::ypes uses MooseXypes::ypeDecorator to do somer@loading which generally ales
you to easily create union types:

subtype StrOrArrayRef,
as Str|ArrayRef;

As with parameterized constraints, thisdoading etends to modules using the types you define in a
type library.

use Moose,
use MooseX::Types::Moose qw(HashRef Int);

has 'attr' => (isa => HashRef | Int);

E#E
S
[E#%a% perivs.24.1 2017-06-17 4

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Types

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MooseX::Types(3pm) UseContributed Perl Documentation MooseX::Types(3pm)

And everything should just work as yatithink.

METHODS
import
Installs the MooseX::Types::Base class into the caller and exports types according to the specification
described in‘LIBRARY DEFINITION”. This will continue to Moose::Util:JipeConstraintsimport
method to export helper functions you will need to declare your types.

type_export_generator
Generate a type export, elgt() . This will return either a Moose::MetaypeConstraint object, or
alternatvely a MooseX:: Types::UndefinedType object if the type was not yet defined.

create_arged_type_constraint (Shame@args)
Given a Sring $name with @args find the matching type constraint and parameterize it @iéings.

create_base_type_constraint ($name)
Given a Sring $name, find the matching type constraint.

create_type_decorator ($type_constraint)
Given a$type_constraint , return a lightweight MooseX:: Types::TypeDecorator instance.

coercion_export_generator
This generates a coercion handler function,te.gnt($value)

check_export_generator
Generates a constraint check closure,is.dnt($value)

CAVEATS
The following are lists of gotchas and their workarounds faeldpers coming from the standard
string based type constraint names

Uniqueness
A library makes the types quasi-unique by prefixing their names with (aultjehe library package
name. If you're only using the type handler functions provided by MooseX::Types, you sheuddn’
have © use a types actual full name.

Argument separation ('=>' versus ',")
The perlop manpage has this to say about the '=>' operator: “The => operator is a synonym for the
comma, but forces gnword (consisting entirely of word characters) to its left to be interpreted as a
string (as of 5.001). This includesowmds that might otherwise be considered a constant or function
call”

Due to this stringification, the following wiNOT work as you might think:
subtype StrOrArrayRef => as Str | ArrayRef;

The StrOrArrayRef type will have its stringification actiated — thiscauses the subtype to not be
created. Sincthe bareord type constraints are not strings you really should not try to treat them that
way. You will have o use the ’, operator instead. The authors of this package realize that all the
Moose documentation and examples nearly uniformly use the '=>' version of the comma operator and
this could be an issue if you are wering code.

Paches welcome for discussion.

Compatibility with Sub::Exporter
If you want to use Sub::Exporter with a Type Libtaygu need to maksure you export all the type
constraints declaretlS WELL AS ary additional export targets. For example if you do:

package TypeAndSubExporter;

use MooseX::Types::Moose qw(Str);

use MooseX::Types —declare => [qw(MyStr)];

use Sub::Exporter —setup => { exports => [qw(something)] };

subtype MyStr, as Str;

sub something {
return 1,

E#E
S
[E#a% perivs.24.1 2017-06-17 5

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Types

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

E%[E
St
Ed

MooseX::Types(3pm) UseContributed Perl Documentation MooseX::Types(3pm)

}

t hen in another module ...

package Foo;
use TypeAndSubExporter qw(MyStr);

You'll get a"MyStr" is not exported by the TypeAndSubExporter module error.
It can be worked around by:

— use Sub::Exporter —setup => { exports => [qw(something)] };
+ use Sub::Exporter —setup => { exports => [qw(something MyStr)] };

This is a workaround and | am exploringnhto make these modules avk better togetherl realize
this workaround will lead a lot of duplication in your export declarations and will be onerousgfor lar
type libraries.Paches and detailed test cases welcome. See the tests directory for a start on this.

COMBINING TYPE LIBRARIES
You may want to combine a set of types for your application with other type libraries, lik
MooseX::Types::Moose or MooseX:: Types::Common::String.

The MooseX::Types::Combine module provides a sim#é¢ for combining a set of type libraries

together.
SEE ALSO

Moose, Moose::Util:: TypeConstraints, MooseX::Types::Moose, Sub::Exporter
ACKNOWLEDGEMENTS

Many thanks to thétmoose cabal onrc.perl.org
SUPPORT

Bugs may be submitted through the RT bug tracker

<https://rt.cpan.org/Public/Dist/Display.html?Name=Moosglds> (or bg—MooseX-Vpes A rt
DOT cpan DO org <mailto:bug-MooseX-TypesRArt DOT gpan DO org>).

There is also a mailing Ilist valable for users of this distribution, at
<http://lists.perl.org/list/moose.html>.

There is also an irc channeladable for users of this distribution, &moose on irc.perl.org
<irc:/lirc.perl.org/#fmoose>.

AUTHOR
Robert “phaylon’ Sedlacek <rs A 474 DOT at>

CONTRIBUTORS
» Karen Etheridge <etherTAcpan DO org>

» Dave Rolsky <autarch A urth DOT org>

» John Napiorkwski <jjnapiork Al cpan DO’ org>

» Robert 'phaylon’ Sedlacek <phayloi Apan DO org>
» Rafael Kitover <rkitover AT cpan DO org>

* Florian Ragwitz <rafl & debian DA org>

* Matt S Trout <mst A shadowcat D@ co DOT wk>

e Tomas Doran (tOm) <bobtfishTAbobtfish DA net>

e Jesse Luehrs <gaAT tozt DOT net>

e Mark Fowler <mark A twoshortplanks D@ com>

* Hans Dieter Pearge<hdp AT weftsoar DA net>

e Graham Knop <hagrAT haag DOT org>

» Paul Fenwick <pjf A perltraining DO’ com DOT au>
» Kent Fredric <kentfredric A gmail DOT com>

perl v5.24.1 2017-06-17 6

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Types

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MooseX::Types(3pm) UseContributed Perl Documentation MooseX::Types(3pm)

e Justin Hunter <justin DDd DOT hunter A gmail DOT com>

COPYRIGHT AND LICENCE
This software is copyright (c) 2007 by Robert “phayl@gdlacek.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

E#E
S
[E#%a% perivs.24.1 2017-06-17 7

https://man.m.sourcentral.org/ubuntu1710/3+MooseX::Types

