Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MouseX::Getopt(3pm) UseZontributed Perl Documentation MouseX::Getopt(3pm)

NAME MouseX::Getopt — A Mouse role for processing command line options
SYNOPSIS

In your class

package My::App;

use Mouse,

with 'MouseX::Getopt';

has 'out' => (is => 'rw', isa => 'Str', required => 1);
has 'in' =>(is => 'rw', isa => 'Str', required => 1);

. .. rest of the class here

in your script
#!/usr/bin/perl

use My::App;

my $app = My::App—>new_with_options();
. .. rest of the script here

on the command line
% perl my_app_script.pl —in file.input —out file.dump

DESCRIPTION
This is a role which prades an alternate constructor for creating objects using parameters passed in
from the command line.

This module attempts tbwIM as much as possible with the command line params by introspecting
your classs dtributes. It will use the name of your attribute as the command line option, and if there is
a type constraint defined, it will configure Getopt::Long to handle the option accordingly.

You can use the trait MouseX::Getopt::Meta::Attrib::Trait or the attribute metaclass
MouseX::Getopt::Meta::Attribute to get non-default commandline option names and aliases.

You can use the trait MouseX::Getopt::Meta::Attrib:: Trait::NoGetopt or the attribute metaclass
MouseX::Getopt::Meta:: Attribte::NoGetopt to hae MouseX::Getopt ignore your attribte in the
commandline options.

By default, attributes which start with an underscore are meh giommandline argument support,
unless the attrilte’s metaclass is set to MouseX::Getopt::Meta::Attribute. If you derant your
accessors to ka the leading underscore in their name, you can do this:

f or read/write attributes
has ' foo' => (accessor => 'foo’, ...);

or f orread-only attributes
has ' bar' => (reader => 'bar’, ...);

This will mean that Getopt will not handle a ——foo param, but your code can still cidbthmethod.
If your class also uses a configfile-loading role based on MouseX::ConfigFromFile, such as

MouseX::SimpleConfig, MouseX::Getopthew_with_options will load the configfile specified
by the——configfile option (or the default youé gven for the configfile attribute) for you.

Options specified in multiple places fallahe following precedence order. commandlinerades
configfile, which errides explicit new_with_options parameters.

Supported Type Constraints
Bool
A Bool type constraint is set up as a boolean option with Getopt::Long. So that thistettrib
description:

has 'verbose' => (is => 'rw', isa => 'Bool");

would translate intoverbose! as a Getopt::Long option descriptevhich would enable the

[E] g3 sl
|
=]k perl v5.22.2 2016-07-24 1

https://man.m.sourcentral.org/ubuntu1710/3+MouseX::Getopt

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MouseX::Getopt(3pm) UseZontributed Perl Documentation MouseX::Getopt(3pm)

following command line options:

% nmyg_script.pl ——verbose
% nmg_script.pl ——noverbose

Int, Float, Sr
These type constraints are set up as properly typed options with Getopt::Long, usingthe
and=s modifiers as appropriate.

ArrayRef

An ArrayRef type constraint is set up as a multiple value option in Getopt::Long. So that this
attribute description:

has 'include’ => (
is = rw,
isa => 'ArrayRef',
default => sub {[] }
)i
would translate intdncludes=s@ as a Getopt::Long option descriptahich would enable the
following command line options:

% ng_script.pl ——include /usr/lib ——include /usr/local/lib

HashRef
A HashRef type constraint is set up as a haslug option in Getopt::Long. So that this atiti
description:
has 'define' => (
is = 'rw,
isa => 'HashRef,

default => sub {{} }
)i

would translate intadefine=s% as a Getopt::Long option descriptavhich would enable the
following command line options:

% nmy_script.pl ——define os=linux ——define vendor=debian

Custom Type Constraints

It is possible to create custom type constraint to option spec mappings if you need them. The process is
fairly simple (but a little verbose maybe). First you create a custom subtype:lik

subtype 'ArrayOfints'
=> as 'ArrayRef'
=> where { scalar (grep { looks_like_number($)} @$) 1}

Then you register the mapping,diko:

MouseX::Getopt::OptionTypeMap—>add_option_type_to_map(
‘ArrayOfints' => '=i@"
);

Now any &tribute declarations using this type constraint will get the custom option spec. So that, this:
has 'nums' => (
is => 'ro|,
isa => 'ArrayOfints’,
default => sub { [0] }
);
Will translate to the following on the command line:
% mg_script.pl ——nums 5 ——nums 88 ——nums 199

This example is fairly trivial, but more comglealidations are easily possible with a little creiai
The trick is balancing the type constraint validations with the Getopt::Long validations.

Better examples are certainly welcome :)
al$210]
I
[=]k perl v5.22.2 2016-07-24 2

https://man.m.sourcentral.org/ubuntu1710/3+MouseX::Getopt

[w]
|
=]

E

2

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

[=

MouseX::Getopt(3pm) UseZontributed Perl Documentation MouseX::Getopt(3pm)

Inferred Type Constraints

If you define a custom subtype which is a subtype of one of the staf®lgydorted Type Constraints’
abore, and do not explicitly provide custom support as in “Custom Type Constraiieve,
MouseX::Getopt will treat it lik the parent type for Getopt purposes.

For example, if you had the same custéarayOfints subtype from the examples alepbut did
not add a ne custom option type for it to th@ptionTypeMap , it would be treated just lé&ka rormal
ArrayRef type for Getopt purposes (thatis@).

new_with_options (Y%params)
This method will tak a ®t of defwlt %params and then collect params from the command line
(possibly @erriding those irboparams) and then return a newly constructed object.

The special parametargyv , if specified should point to an array reference with an array to use
instead ofl@ARGV

If ‘‘GetOptions’ in Getopt::Long &ils (due to imaid arguments),new_with_options will
throw an eception.

If Getopt::Long::Descriptie is installed and an of the following command line params are
passed, the program wilkie with usage information (and the optierdate will be stored in the
help_flag attribute). You can add descriptions for each option by includohgc@mentation
option for each attribute to document.

-—?
——help
—-usage

If you have Cetopt::Long::Descriptie the usage param is also passed tew as the usage
option.

ARGV
This accessor contains a reference to odphe @ARGYHrray as it originally existed at the time
of new_with_options

extra_argv
This accessor contains an arrayref of ledtc@ARG¥lements that Getopt::Long did not parse.
Note that the rea®@ ARG left un-mangled.

usage
This accessor contains the Getopt::Long::Desegptisage object (if Getopt::Long::Descrii
is used).

help_flag
This accessor contains the boolean state of the ——help, ——usage amgtiera (true if ap of
these options were passed on the command line).

meta
This returns the role meta object.

AUTHORS

NAKAGAWA Masaki <masaki & cpan DO org>
FUJI Goro <gfuji AT cpan DO org>

Stevan Little <stevan AT iinteractve DOT com>
Brandon L. Black <blblack Agmail DOT com>
Yuval Kogman <nothingmuchT®woobling DOT org>
Ryan D Johnson <ryanTAnnerfence D@ com>
Drew Taylor <drev AT drewtaylor DO’ com>
Tomas Doran <bobtfishTAbobtfish DA net>
Florian Ragwitz <rafl & debian DO org>

Dagfinn limari Mannsaker <ilmariTilmari DOT org>
Avar Arnfjord Bjarmason <er AT cpan DO org>
Chris Prather <perigrinAcpan DO’ org>

Mark Gardner <mjgardnerTAcpan DO’ org>

perl v5.22.2 2016-07-24 3

https://man.m.sourcentral.org/ubuntu1710/3+MouseX::Getopt

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MouseX::Getopt(3pm) UseZontributed Perl Documentation MouseX::Getopt(3pm)

Tokuhiro Matsuno <tokuhiromRcpan DO org>

COPYRIGHT AND LICENSE
This software is copyright (c) 2012 by Infinity Interaefilnc.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

[E] g3 sl
|
=]k perl v5.22.2 2016-07-24 4

https://man.m.sourcentral.org/ubuntu1710/3+MouseX::Getopt

