
MIO_OPEN (3) BSD Library Functions Manual MIO_OPEN (3)

NAME
mio_open, mio_close, mio_read, mio_write, mio_nfds, mio_pollfd, mio_revents,
mio_eof — sndio interface to MIDI streams

SYNOPSIS
#include <sndio.h>

struct mio_hdl ∗
mio_open(const char ∗ name , unsigned int mode , int nbio_flag);

void
mio_close(struct mio_hdl ∗ hdl);

size_t
mio_read(struct mio_hdl ∗ hdl , void ∗ addr , size_t nbytes);

size_t
mio_write(struct mio_hdl ∗ hdl , const void ∗ addr , size_t nbytes);

int
mio_nfds(struct mio_hdl ∗ hdl);

int
mio_pollfd(struct mio_hdl ∗ hdl , struct pollfd ∗ pfd , int events);

int
mio_revents(struct mio_hdl ∗ hdl , struct pollfd ∗ pfd);

int
mio_eof(struct mio_hdl ∗ hdl);

DESCRIPTION
Thesndio library allows user processes to accessmidi(4) hardware andsndiod(8) MIDI thru boxes
and control ports in a uniform way.

Opening and closing an MIDI stream
First the application must call themio_open() function to obtain a handle representing the newly cre-
ated stream; later it will be passed as thehdl argument of most other functions.Thename parameter
gives the device string discussed insndio(7). If the program is using a single device and is providing
no device chooser, it should be set to MIO_PORTANY to allow the user to select it using the
MIDIDEVICE environment variable.

Themode parameter gives the direction of the stream. The following are supported:

MIO_OUT The stream is output-only; data written to the stream will be sent to the hard-
ware or other programs.

MIO_IN The stream is input-only; received data from the hardware or other programs
must be read from the stream.

MIO_IN | MIO_OUT The stream sends and receives data. Thismode should be used rather than call-
ing mio_open() twice.

If the nbio_flag argument is true (i.e. non-zero), then themio_read() andmio_write() functions
(see below) will be non-blocking.

The mio_close() function closes the stream and frees all allocated resources associated with the
libsndio handle.

Sending and receiving data
When input mode is selected, themio_read() function must be called to retrieve received data; it must
be called often enough to ensure that internal buffers will not overrun. It will store at mostnbytes
bytes at theaddr location. Unlessthenbio_flag flag is set, it will block until data becomes avail-

BSD March12, 2016 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mio_eof


MIO_OPEN (3) BSD Library Functions Manual MIO_OPEN (3)

able and will return zero only on error.

When output mode is selected, themio_write() function can be called to provide data to transmit.
Unless thenbio_flag is set,mio_write() will block until the requested amount of data is written.

Non-blocking mode operation
If the nbio_flag is set onmio_open(), then themio_read() andmio_write() functions will
never block; if no data is available, they will return zero immediately.

To avoid busy loops when non-blocking mode is used, thepoll(2) system call can be used to check if
data can be read from or written to the stream.Themio_pollfd() function prepares the arraypfd of
pollfd structures for use withpoll(2). Theoptimal size of thepfd array, which the caller must pre-
allocate, is provided by themio_nfds() function.

poll(2) will sleep until any of theevents requested withmio_pollfd() have occurred. Events are
represented as a bit-mask ofPOLLIN and POLLOUT constants. Theev ents which woke up poll(2)
can be obtained with themio_revents() function. If POLLIN is set,mio_read() can be called with-
out blocking. If POLLOUT is set,mio_write() can be called without blocking. POLLHUP may be
set if an error occurs, even if it is not requested withmio_pollfd().

Error handling
Errors related to the MIDI subsystem (like hardware errors or dropped connections) and programming
errors (such as a call tomio_read() on a play-only stream) are considered fatal. Oncean error occurs,
all functions which take amio_hdl argument, exceptmio_close() andmio_eof(), stop working (i.e.
always return 0).

RETURN VALUES
Themio_open() function returns the newly created handle on success or NULL on failure.

Themio_pollfd() function returns the number ofpollfd structures filled.Themio_nfds() function
returns the number ofpollfd structures the caller must preallocate in order to be sure that
mio_pollfd() will never overrun.

Themio_revents() function returns the bit-mask set bypoll(2) in thepfd array ofpollfd structures.

Themio_read() andmio_write() functions return the number of bytes transferred.

Themio_eof() function returns 0 if there’s no pending error, and a non-zero value if there’s an error.

ENVIRONMENT
SNDIO_DEBUG The debug level: may be a value between 0 and 2.

SEE ALSO
poll(2),midi(4),sndio(7),sndiod(8)

BSD March12, 2016 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mio_eof

