
mnesia(3erl) ErlangModule Definition mnesia(3erl)

NAME
mnesia − A distributed telecommunications DBMS

DESCRIPTION
The following are some of the most important and attractive capabilities provided by Mnesia:

* A relational/object hybrid data model that is suitable for telecommunications applications.

* A DBMS query language, Query List Comprehension (QLC) as an add-on library.

* Persistence. Tables can be coherently kept on disc and in the main memory.

* Replication. Tables can be replicated at several nodes.

* Atomic transactions. A series of table manipulation operations can be grouped into a single atomic
transaction.

* Location transparency. Programs can be written without knowledge of the actual data location.

* Extremely fast real-time data searches.

* Schema manipulation routines. The DBMS can be reconfigured at runtime without stopping the
system.

This Reference Manual describes the Mnesia API. This includes functions that define and manipulate
Mnesia tables.

All functions in this Reference Manual can be used in any combination with queries using the list com-
prehension notation. For information about the query notation, see theqlc manual page in STDLIB.

Data in Mnesia is organized as a set of tables. Each table has a name that must be an atom. Each table
is made up of Erlang records. The user is responsible for the record definitions. Each table also has a
set of properties. The following are some of the properties that are associated with each table:

* type. Each table can have set, ordered_set, or bag semantics. Notice that currentlyordered_setis
not supported fordisc_only_copies.

If a table is of typeset, each key leads to either one or zero records.

If a new item is inserted with the same key as an existing record, the old record is overwritten.
However, if a table is of typebag, each key can map to several records. All records in typebag
tables are unique, only the keys can be duplicated.

* record_name. All records stored in a table must have the same name. The records must be
instances of the same record type.

* ram_copies. A table can be replicated on a number of Erlang nodes. Propertyram_copiesspecifies
a list of Erlang nodes where RAM copies are kept. These copies can be dumped to disc at regular
intervals. However, updates to these copies are not written to disc on a transaction basis.

* disc_copies. This property specifies a list of Erlang nodes where the table is kept in RAM and on
disc. All updates of the table are performed in the actual table and are also logged to disc. If a ta-
ble is of typedisc_copiesat a certain node, the entire table is resident in RAM memory and on
disc. Each transaction performed on the table is appended to aLOG file and written into the RAM
table.

* disc_only_copies. Some, or all, table replicas can be kept on disc only. These replicas are consid-
erably slower than the RAM-based replicas.

* index. This is a list of attribute names, or integers, which specify the tuple positions on which
Mnesia is to build and maintain an extra index table.

* local_content. When an application requires tables whose contents are local to each node,
local_contenttables can be used. The table name is known to all Mnesia nodes, but its content is
unique on each node. This means that access to such a table must be done locally. Set field
local_contentto true to enable thelocal_contentbehavior. Default isfalse.

* majority. This attribute istrue or false; default is false. Whentrue, a majority of the table replicas
must be available for an update to succeed. Majority checking can be enabled on tables with mis-
sion-critical data, where it is vital to avoid inconsistencies because of network splits.

Ericsson AB mnesia 4.15 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

* snmp. Each (set-based) Mnesia table can be automatically turned into a Simple Network Manage-
ment Protocol (SNMP) ordered table as well. This property specifies the types of the SNMP keys.

* attributes. The names of the attributes for the records that are inserted in the table.

For information about the complete set of table properties and their details, seemnesia:create_table/2.

This Reference Manual uses a table of persons to illustrate various examples. The following record def-
inition is assumed:

-record(person, {name,
age = 0,
address = unknown,
salary = 0,
children = []}),

The first record attribute is the primary key, or key for short.

The function descriptions are sorted in alphabetical order. It is recommended to start to read aboutmne-
sia:create_table/2, mnesia:lock/2, andmnesia:activity/4before you continue and learn about the rest.

Writing or deleting in transaction-context creates a local copy of each modified record during the trans-
action. During iteration, that is,mnesia:fold[lr]/4, mnesia:next/2, mnesia:prev/2, and mne-
sia:snmp_get_next_index/2, Mnesia compensates for every written or deleted record, which can reduce
the performance.

If possible, avoid writing or deleting records in the same transaction before iterating over the table.

EXPORTS
abort(Reason) -> transaction abort

Makes the transaction silently return the tuple{aborted, Reason}. Termination of a Mnesia
transaction means that an exception is thrown to an enclosingcatch. Thus, the expression
catch mnesia:abort(x)does not terminate the transaction.

activate_checkpoint(Args) -> {ok,Name,Nodes} | {error,Reason}

A checkpoint is a consistent view of the system. A checkpoint can be activated on a set of
tables. This checkpoint can then be traversed and presents a view of the system as it existed at
the time when the checkpoint was activated, even if the tables are being or have been manipu-
lated.

Args is a list of the following tuples:

* {name,Name}. Nameis the checkpoint name. Each checkpoint must have a name that is
unique to the associated nodes. The name can be reused only once the checkpoint has
been deactivated. By default, a name that is probably unique is generated.

* {max,MaxTabs}. MaxTabsis a list of tables that are to be included in the checkpoint.
Default is [] . For these tables, the redundancy is maximized and checkpoint information
is retained together with all replicas. The checkpoint becomes more fault tolerant if the
tables have sev eral replicas. When a new replica is added by the schema manipulation
functionmnesia:add_table_copy/3, a retainer is also attached automatically.

* {min,MinTabs}. MinTabs is a list of tables that are to be included in the checkpoint.
Default is []. For these tables, the redundancy is minimized and the checkpoint informa-
tion is only retained with one replica, preferably on the local node.

* {allow_remote,Bool}. falsemeans that all retainers must be local. The checkpoint cannot
be activated if a table does not reside locally.true allows retainers to be allocated on any
node. Default istrue.

* {ram_overrides_dump,Bool}. Only applicable forram_copies. Bool allows you to choose
to back up the table state as it is in RAM, or as it is on disc.true means that the latest
committed records in RAM are to be included in the checkpoint. These are the records
that the application accesses.falsemeans that the records dumped toDAT files are to be
included in the checkpoint. These records are loaded at startup. Default isfalse.

Returns{ok,Name,Nodes}or {error,Reason}. Name is the (possibly generated) checkpoint

Ericsson AB mnesia 4.15 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

name.Nodesare the nodes that are involved in the checkpoint. Only nodes that keep a check-
point retainer know about the checkpoint.

activity(AccessContext, Fun [, Args]) -> ResultOfFun | exit(Reason)

Callsmnesia:activity(AccessContext, Fun, Args, AccessMod), whereAccessModis the default
access callback module obtained bymnesia:system_info(access_module). Args defaults to[]
(empty list).

activity(AccessContext, Fun, Args, AccessMod) -> ResultOfFun | exit(Reason)

Executes the functional objectFunwith argumentArgs.

The code that executes inside the activity can consist of a series of table manipulation func-
tions, which are performed in anAccessContext. Currently, the following access contexts are
supported:

transaction:
Short for{transaction, infinity}

{transaction, Retries}:
Callsmnesia:transaction(Fun, Args, Retries). Notice that the result fromFun is returned
if the transaction is successful (atomic), otherwise the function exits with an abort reason.

sync_transaction:
Short for{sync_transaction, infinity}

{sync_transaction, Retries}:
Calls mnesia:sync_transaction(Fun, Args, Retries). Notice that the result fromFun is
returned if the transaction is successful (atomic), otherwise the function exits with an
abort reason.

async_dirty:
Callsmnesia:async_dirty(Fun, Args).

sync_dirty:
Callsmnesia:sync_dirty(Fun, Args).

ets:
Callsmnesia:ets(Fun, Args).

This function (mnesia:activity/4) differs in an important way from the functionsmnesia:trans-
action, mnesia:sync_transaction, mnesia:async_dirty, mnesia:sync_dirty, and mnesia:ets.
ArgumentAccessModis the name of a callback module, which implements themnesia_access
behavior.

Mnesia forwards calls to the following functions:

* mnesia:lock/2 (read_lock_table/1, write_lock_table/1)

* mnesia:write/3 (write/1, s_write/1)

* mnesia:delete/3 (delete/1, s_delete/1)

* mnesia:delete_object/3 (delete_object/1, s_delete_object/1)

* mnesia:read/3 (read/1, wread/1)

* mnesia:match_object/3 (match_object/1)

* mnesia:all_keys/1

* mnesia:first/1

* mnesia:last/1

* mnesia:prev/2

* mnesia:next/2

* mnesia:index_match_object/4 (index_match_object/2)

Ericsson AB mnesia 4.15 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

* mnesia:index_read/3

* mnesia:table_info/2

to the corresponding:

* AccessMod:lock(ActivityId, Opaque, LockItem, LockKind)

* AccessMod:write(ActivityId, Opaque, Tab, Rec, LockKind)

* AccessMod:delete(ActivityId, Opaque, Tab, Key, LockKind)

* AccessMod:delete_object(ActivityId, Opaque, Tab, RecXS, LockKind)

* AccessMod:read(ActivityId, Opaque, Tab, Key, LockKind)

* AccessMod:match_object(ActivityId, Opaque, Tab, Pattern, LockKind)

* AccessMod:all_keys(ActivityId, Opaque, Tab, LockKind)

* AccessMod:first(ActivityId, Opaque, Tab)

* AccessMod:last(ActivityId, Opaque, Tab)

* AccessMod:prev(ActivityId, Opaque, Tab, Key)

* AccessMod:next(ActivityId, Opaque, Tab, Key)

* AccessMod:index_match_object(ActivityId, Opaque, Tab, Pattern, Attr, LockKind)

* AccessMod:index_read(ActivityId, Opaque, Tab, SecondaryKey, Attr, LockKind)

* AccessMod:table_info(ActivityId, Opaque, Tab, InfoItem)

ActivityId is a record that represents the identity of the enclosing Mnesia activity. The first
field (obtained withelement(1, ActivityId)) contains an atom, which can be interpreted as the
activity type: ets, async_dirty, sync_dirty, or tid. tid means that the activity is a transaction.
The structure of the rest of the identity record is internal to Mnesia.

Opaqueis an opaque data structure that is internal to Mnesia.

add_table_copy(Tab, Node, Type) -> {aborted, R} | {atomic, ok}

Makes another copy of a table at the nodeNode. ArgumentType must be either of the atoms
ram_copies, disc_copies, or disc_only_copies. For example, the following call ensures that a
disc replica of thepersontable also exists at nodeNode:

mnesia:add_table_copy(person, Node, disc_copies)

This function can also be used to add a replica of the table namedschema.

add_table_index(Tab, AttrName) -> {aborted, R} | {atomic, ok}

Table indexes can be used whenever the user wants to use frequently some other field than the
key field to look up records. If this other field has an associated index, these lookups can occur
in constant time and space. For example, if your application wishes to use fieldage to find
efficiently all persons with a specific age, it can be a good idea to have an index on field age.
This can be done with the following call:

mnesia:add_table_index(person, age)

Indexes do not come for free. They occupy space that is proportional to the table size, and they
cause insertions into the table to execute slightly slower.

all_keys(Tab) -> KeyList | transaction abort

Returns a list of all keys in the table namedTab. The semantics of this function is context-sen-
sitive. For more information, seemnesia:activity/4. In transaction-context, it acquires a read
lock on the entire table.

async_dirty(Fun, [, Args]) -> ResultOfFun | exit(Reason)

Calls theFun in a context that is not protected by a transaction. The Mnesia function calls

Ericsson AB mnesia 4.15 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

performed in theFun are mapped to the corresponding dirty functions. This still involves log-
ging, replication, and subscriptions, but there is no locking, local transaction storage, or com-
mit protocols involved. Checkpoint retainers and indexes are updated, but they are updated
dirty. As for normalmnesia:dirty_* operations, the operations are performed semi-asyn-
chronously. For details, seemnesia:activity/4and the User’s Guide.

The Mnesia tables can be manipulated without using transactions. This has some serious dis-
advantages, but is considerably faster, as the transaction manager is not involved and no locks
are set. A dirty operation does, however, guarantee a certain level of consistency, and the dirty
operations cannot return garbled records. All dirty operations provide location transparency to
the programmer, and a program does not have to be aware of the whereabouts of a certain ta-
ble to function.

Notice that it is more than ten times more efficient to read records dirty than within a transac-
tion.

Depending on the application, it can be a good idea to use the dirty functions for certain oper-
ations. Almost all Mnesia functions that can be called within transactions have a dirty equiva-
lent, which is much more efficient.

However, notice that there is a risk that the database can be left in an inconsistent state if dirty
operations are used to update it. Dirty operations are only to be used for performance reasons
when it is absolutely necessary.

Notice that calling (nesting)mnesia:[a]sync_dirtyinside a transaction-context inherits the
transaction semantics.

backup(Opaque [, BackupMod]) -> ok | {error,Reason}

Activates a new checkpoint covering all Mnesia tables, including the schema, with maximum
degree of redundancy, and performs a backup usingbackup_checkpoint/2/3. The default value
of the backup callback moduleBackupModis obtained bymnesia:system_info(backup_mod-
ule).

backup_checkpoint(Name, Opaque [, BackupMod]) -> ok | {error,Reason}

The tables are backed up to external media using backup moduleBackupMod. Tables with the
local contents property are backed up as they exist on the current node.BackupModis the
default backup callback module obtained bymnesia:system_info(backup_module). For infor-
mation about the exact callback interface (themnesia_backup behavior), see the User’s Guide.

change_config(Config, Value) -> {error, Reason} | {ok, ReturnValue}

Configis to be an atom of the following configuration parameters:

extra_db_nodes:
Value is a list of nodes that Mnesia is to try to connect to.ReturnValueis those nodes in
Value that Mnesia is connected to.

Notice that this function must only be used to connect to newly started RAM nodes
(N.D.R.S.N.) with an empty schema. If, for example, this function is used after the net-
work has been partitioned, it can lead to inconsistent tables.

Notice that Mnesia can be connected to other nodes than those returned inReturnValue.

dc_dump_limit:
Value is a number. See the description inSection Configuration Parameters. Return-
Value is the new value. Notice that this configuration parameter is not persistent. It is lost
when Mnesia has stopped.

change_table_access_mode(Tab, AccessMode) -> {aborted, R} | {atomic, ok}

AcccessModeis by default the atomread_writebut it can also be set to the atomread_only. If

Ericsson AB mnesia 4.15 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

AccessModeis set toread_only, updates to the table cannot be performed. At startup, Mnesia
always loadsread_onlytables locally regardless of when and if Mnesia is terminated on other
nodes.

change_table_copy_type(Tab, Node, To) -> {aborted, R} | {atomic, ok}

For example:

mnesia:change_table_copy_type(person, node(), disc_copies)

Transforms thepersontable from a RAM table into a disc-based table atNode.

This function can also be used to change the storage type of the table namedschema. The
schema table can only have ram_copiesor disc_copiesas the storage type. If the storage type
of the schema isram_copies, no other table can be disc-resident on that node.

change_table_load_order(Tab, LoadOrder) -> {aborted, R} | {atomic, ok}

TheLoadOrderpriority is by default 0 (zero) but can be set to any integer. The tables with the
highestLoadOrderpriority are loaded first at startup.

change_table_majority(Tab, Majority) -> {aborted, R} | {atomic, ok}

Majority must be a boolean. Default isfalse. Whentrue, a majority of the table replicas must
be available for an update to succeed. When used on fragmented tables,Tab must be the base
table name. Directly changing the majority setting on individual fragments is not allowed.

clear_table(Tab) -> {aborted, R} | {atomic, ok}

Deletes all entries in the tableTab.

create_schema(DiscNodes) -> ok | {error,Reason}

Creates a new database on disc. Various files are created in the local Mnesia directory of each
node. Notice that the directory must be unique for each node. Two nodes must never share the
same directory. If possible, use a local disc device to improve performance.

mnesia:create_schema/1fails if any of the Erlang nodes given as DiscNodesare not alive, if
Mnesia is running on any of the nodes, or if any of the nodes already have a schema. Usemne-
sia:delete_schema/1to get rid of old faulty schemas.

Notice that only nodes with disc are to be included inDiscNodes. Disc-less nodes, that is,
nodes where all tables including the schema only resides in RAM, must not be included.

create_table(Name, TabDef) -> {atomic, ok} | {aborted, Reason}

Creates a Mnesia table calledNameaccording to argumentTabDef. This list must be a list of
{Item, Value}tuples, where the following values are allowed:

* {access_mode, Atom}. The access mode is by default the atomread_writebut it can also
be set to the atomread_only. If AccessModeis set toread_only, updates to the table can-
not be performed.

At startup, Mnesia always loadsread_onlytable locally regardless of when and if Mnesia
is terminated on other nodes. This argument returns the access mode of the table. The
access mode can beread_onlyor read_write.

* {attributes, AtomList}is a list of the attribute names for the records that are supposed to
populate the table. Default is[key, val] . The table must at least have one extra attribute in
addition to the key.

When accessing single attributes in a record, it is not necessary, or even recommended, to
hard code any attribute names as atoms. Use constructrecord_info(fields, RecordName)
instead. It can be used for records of typeRecordName.

Ericsson AB mnesia 4.15 6

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

* {disc_copies, Nodelist}, whereNodelistis a list of the nodes where this table is supposed
to have disc copies. If a table replica is of typedisc_copies, all write operations on this
particular replica of the table are written to disc and to the RAM copy of the table.

It is possible to have a replicated table of typedisc_copieson one node and another type
on another node. Default is[] .

* {disc_only_copies, Nodelist}, whereNodelistis a list of the nodes where this table is sup-
posed to have disc_only_copies. A disc only table replica is kept on disc only and unlike
the other replica types, the contents of the replica do not reside in RAM. These replicas
are considerably slower than replicas held in RAM.

* {index, Intlist}, whereIntlist is a list of attribute names (atoms) or record fields for which
Mnesia is to build and maintain an extra index table. Theqlc query compilermaybe able
to optimize queries if there are indexes available.

* {load_order, Integer} . The load order priority is by default 0 (zero) but can be set to any
integer. The tables with the highest load order priority are loaded first at startup.

* {majority, Flag}, whereFlag must be a boolean. Iftrue, any (non-dirty) update to the ta-
ble is aborted, unless a majority of the table replicas are available for the commit. When
used on a fragmented table, all fragments are given the same the same majority setting.

* {ram_copies, Nodelist}, whereNodelistis a list of the nodes where this table is supposed
to have RAM copies. A table replica of typeram_copiesis not written to disc on a per
transaction basis.ram_copiesreplicas can be dumped to disc with the functionmne-
sia:dump_tables(Tabs). Default value for this attribute is[node()].

* {record_name, Name}, whereNamemust be an atom. All records stored in the table must
have this name as the first element. It defaults to the same name as the table name.

* {snmp, SnmpStruct}. For a description ofSnmpStruct, seemnesia:snmp_open_table/2. If
this attribute is present inArgList to mnesia:create_table/2, the table is immediately
accessible by SNMP. Therefore applications that use SNMP to manipulate and control
the system can be designed easily, since Mnesia provides a direct mapping between the
logical tables that make up an SNMP control application and the physical data that makes
up a Mnesia table.

* {storage_properties, [{Backend, Properties}] forwards more properties to the back end
storage.Backend can currently beetsor dets. Propertiesis a list of options sent to the
back end storage during table creation.Propertiescannot contain properties already used
by Mnesia, such astypeor named_table.

For example:

mnesia:create_table(table, [{ram_copies, [node()]}, {disc_only_copies, nodes()},
{storage_properties,
[{ets, [compressed]}, {dets, [{auto_save, 5000}]}]}])

* {type, Type}, whereType must be either of the atomsset, ordered_set, or bag. Default is
set. In a set, all records have unique keys. In abag, sev eral records can have the same
key, but the record content is unique. If a non-unique record is stored, the old conflicting
records are overwritten.

Notice that currentlyordered_setis not supported fordisc_only_copies.

* {local_content, Bool}, whereBool is trueor false. Default isfalse.

For example, the following call creates thepersontable (defined earlier) and replicates it on
two nodes:

mnesia:create_table(person,
[{ram_copies, [N1, N2]},
{attributes, record_info(fields, person)}]).

If it is required that Mnesia must build and maintain an extra index table on attributeaddress

Ericsson AB mnesia 4.15 7

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

of all thepersonrecords that are inserted in the table, the following code would be issued:

mnesia:create_table(person,
[{ram_copies, [N1, N2]},
{index, [address]},
{attributes, record_info(fields, person)}]).

The specification ofindex and attributescan be hard-coded as{index, [2]} and {attributes,
[name, age, address, salary, children]}, respectively.

mnesia:create_table/2writes records into the tableschema. This function, and all other
schema manipulation functions, are implemented with the normal transaction management
system. This guarantees that schema updates are performed on all nodes in an atomic manner.

deactivate_checkpoint(Name) -> ok | {error, Reason}

The checkpoint is automatically deactivated when some of the tables involved have no retainer
attached to them. This can occur when nodes go down or when a replica is deleted. Check-
points are also deactivated with this function.Nameis the name of an active checkpoint.

del_table_copy(Tab, Node) -> {aborted, R} | {atomic, ok}

Deletes the replica of tableTab at nodeNode. When the last replica is deleted with this func-
tion, the table disappears entirely.

This function can also be used to delete a replica of the table namedschema. The Mnesia node
is then removed. Notice that Mnesia must be stopped on the node first.

del_table_index(Tab, AttrName) -> {aborted, R} | {atomic, ok}

Deletes the index on attribute with nameAttrNamein a table.

delete({Tab, Key}) -> transaction abort | ok

Callsmnesia:delete(Tab, Key, write).

delete(Tab, Key, LockKind) -> transaction abort | ok

Deletes all records in tableTab with the keyKe y.

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires a lock of typeLockKind in the record. Currently, the lock types
write andsticky_writeare supported.

delete_object(Record) -> transaction abort | ok

Callsmnesia:delete_object(Tab, Record, write), whereTab is element(1, Record).

delete_object(Tab, Record, LockKind) -> transaction abort | ok

If a table is of typebag, it can sometimes be needed to delete only some of the records with a
certain key. This can be done with the functiondelete_object/3. A complete record must be
supplied to this function.

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires a lock of typeLockKind on the record. Currently, the lock types
write andsticky_writeare supported.

delete_schema(DiscNodes) -> ok | {error,Reason}

Deletes a database created withmnesia:create_schema/1. mnesia:delete_schema/1fails if any
of the Erlang nodes given as DiscNodesare not alive, or if Mnesia is running on any of the
nodes.

Ericsson AB mnesia 4.15 8

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

After the database is deleted, it can still be possible to start Mnesia as a disc-less node. This
depends on how configuration parameterschema_locationis set.

Warning:
Use this function with extreme caution, as it makes existing persistent data obsolete. Think
twice before using it.

delete_table(Tab) -> {aborted, Reason} | {atomic, ok}

Permanently deletes all replicas of tableTab.

dirty_all_keys(Tab) -> KeyList | exit({aborted, Reason})

Dirty equivalent of the functionmnesia:all_keys/1.

dirty_delete({Tab, Key}) -> ok | exit({aborted, Reason})

Callsmnesia:dirty_delete(Tab, Key).

dirty_delete(Tab, Key) -> ok | exit({aborted, Reason})

Dirty equivalent of the functionmnesia:delete/3.

dirty_delete_object(Record)

Callsmnesia:dirty_delete_object(Tab, Record), whereTab is element(1, Record).

dirty_delete_object(Tab, Record)

Dirty equivalent of the functionmnesia:delete_object/3.

dirty_first(Tab) -> Key | exit({aborted, Reason})

Records insetor bag tables are not ordered. However, there is an ordering of the records that
is unknown to the user. Therefore, a table can be traversed by this function with the function
mnesia:dirty_next/2.

If there are no records in the table, this function returns the atom’$end_of_table’. It is there-
fore highly undesirable, but not disallowed, to use this atom as the key for any user records.

dirty_index_match_object(Pattern, Pos)

Startsmnesia:dirty_index_match_object(Tab, Pattern, Pos), whereTab is element(1, Pattern).

dirty_index_match_object(Tab, Pattern, Pos)

Dirty equivalent of the functionmnesia:index_match_object/4.

dirty_index_read(Tab, SecondaryKey, Pos)

Dirty equivalent of the functionmnesia:index_read/3.

dirty_last(Tab) -> Key | exit({aborted, Reason})

Works exactly like mnesia:dirty_first/1but returns the last object in Erlang term order for the
ordered_settable type. For all other table types,mnesia:dirty_first/1andmnesia:dirty_last/1
are synonyms.

dirty_match_object(Pattern) -> RecordList | exit({aborted, Reason})

Callsmnesia:dirty_match_object(Tab, Pattern), whereTab is element(1, Pattern).

Ericsson AB mnesia 4.15 9

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

dirty_match_object(Tab, Pattern) -> RecordList | exit({aborted, Reason})

Dirty equivalent of the functionmnesia:match_object/3.

dirty_next(Tab, Key) -> Key | exit({aborted, Reason})

Trav erses a table and performs operations on all records in the table. When the end of the table
is reached, the special key ’$end_of_table’is returned. Otherwise, the function returns a key
that can be used to read the actual record. The behavior is undefined if another Erlang process
performs write operations on the table while it is being traversed with the functionmne-
sia:dirty_next/2.

dirty_pr ev(Tab, Key) -> Key | exit({aborted, Reason})

Works exactly like mnesia:dirty_next/2but returns the previous object in Erlang term order for
the ordered_set table type. For all other table types,mnesia:dirty_next/2and mne-
sia:dirty_prev/2 are synonyms.

dirty_read({Tab, Key}) -> ValueList | exit({aborted, Reason}

Callsmnesia:dirty_read(Tab, Key).

dirty_read(Tab, Key) -> ValueList | exit({aborted, Reason}

Dirty equivalent of the functionmnesia:read/3.

dirty_select(Tab, MatchSpec) -> ValueList | exit({aborted, Reason}

Dirty equivalent of the functionmnesia:select/2.

dirty_slot(Tab, Slot) -> RecordList | exit({aborted, Reason})

Trav erses a table in a manner similar to the functionmnesia:dirty_next/2. A table has a num-
ber of slots that range from 0 (zero) to an unknown upper bound. The functionmne-
sia:dirty_slot/2returns the special atom’$end_of_table’when the end of the table is reached.
The behavior of this function is undefined if a write operation is performed on the table while
it is being traversed.

dirty_update_counter({Tab, Key}, Incr) -> NewVal | exit({aborted, Reason})

Callsmnesia:dirty_update_counter(Tab, Key, Incr).

dirty_update_counter(Tab, Key, Incr) -> NewVal | exit({aborted, Reason})

Mnesia has no special counter records. However, records of the form{Tab, Key, Integer} can
be used as (possibly disc-resident) counters whenTab is aset. This function updates a counter
with a positive or neg ative number. However, counters can never become less than zero. There
are two significant differences between this function and the action of first reading the record,
performing the arithmetics, and then writing the record:

* It is much more efficient.

* mnesia:dirty_update_counter/3is performed as an atomic operation although it is not
protected by a transaction.

If two processes performmnesia:dirty_update_counter/3simultaneously, both updates take
effect without the risk of losing one of the updates. The new valueNewValof the counter is
returned.

If Ke ydo not exists, a new record is created with valueIncr if it is larger than 0, otherwise it is
set to 0.

dirty_write(Record) -> ok | exit({aborted, Reason})

Ericsson AB mnesia 4.15 10

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

Callsmnesia:dirty_write(Tab, Record), whereTab is element(1, Record).

dirty_write(Tab, Record) -> ok | exit({aborted, Reason})

Dirty equivalent of the functionmnesia:write/3.

dump_log() -> dumped

Performs a user-initiated dump of the local log file. This is usually not necessary, as Mnesia by
default manages this automatically. See configuration parametersdump_log_time_threshold
anddump_log_write_threshold.

dump_tables(TabList) -> {atomic, ok} | {aborted, Reason}

Dumps a set ofram_copiestables to disc. The next time the system is started, these tables are
initiated with the data found in the files that are the result of this dump. None of the tables can
have disc-resident replicas.

dump_to_textfile(Filename)

Dumps all local tables of a Mnesia system into a text file, which can be edited (by a normal
text editor) and then be reloaded withmnesia:load_textfile/1. Only use this function for educa-
tional purposes. Use other functions to deal with real backups.

error_description(Error) -> String

All Mnesia transactions, including all the schema update functions, either return value
{atomic, Val} or the tuple{aborted, Reason}. Reasoncan be either of the atoms in the follow-
ing list. The functionerror_description/1returns a descriptive string that describes the error.

* nested_transaction. Nested transactions are not allowed in this context.

* badarg. Bad or invalid argument, possibly bad type.

* no_transaction. Operation not allowed outside transactions.

* combine_error. Table options illegally combined.

* bad_index. Index already exists, or was out of bounds.

* already_exists. Schema option to be activated is already on.

* index_exists. Some operations cannot be performed on tables with an index.

* no_exists. Tried to perform operation on non-existing (not-alive) item.

* system_limit. A system limit was exhausted.

* mnesia_down. A transaction involves records on a remote node, which became unavail-
able before the transaction was completed. Records are no longer available elsewhere in
the network.

* not_a_db_node. A node was mentioned that does not exist in the schema.

* bad_type. Bad type specified in argument.

* node_not_running. Node is not running.

* truncated_binary_file. Truncated binary in file.

* active. Some delete operations require that all active records are removed.

* illegal. Operation not supported on this record.

Error can beReason, {error, Reason}, or {aborted, Reason}. Reasoncan be an atom or a tuple
with Reasonas an atom in the first field.

The following examples illustrate a function that returns an error, and the method to retrieve
more detailed error information:

Ericsson AB mnesia 4.15 11

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

* The function mnesia:create_table(bar, [{attrib utes, 3.14}]) returns the tuple
{aborted,Reason}, whereReasonis the tuple{bad_type,bar,3.14000}.

* The functionmnesia:error_description(Reason)returns the term{"Bad type on some
provided arguments",bar,3.14000}, which is an error description suitable for display.

ets(Fun, [, Args]) -> ResultOfFun | exit(Reason)

Calls theFun in a raw context that is not protected by a transaction. The Mnesia function call
is performed in theFun and performed directly on the local ETS tables on the assumption that
the local storage type isram_copiesand the tables are not replicated to other nodes. Subscrip-
tions are not triggered and checkpoints are not updated, but it is extremely fast. This function
can also be applied todisc_copiestables if all operations are read only. For details, seemne-
sia:activity/4and the User’s Guide.

Notice that calling (nesting) amnesia:etsinside a transaction-context inherits the transaction
semantics.

first(Tab) -> Key | transaction abort

Records insetor bag tables are not ordered. However, there is an ordering of the records that
is unknown to the user. A table can therefore be traversed by this function with the function
mnesia:next/2.

If there are no records in the table, this function returns the atom’$end_of_table’. It is there-
fore highly undesirable, but not disallowed, to use this atom as the key for any user records.

foldl(Function, Acc, Table) -> NewAcc | transaction abort

Iterates over the tableTable and callsFunction(Record, NewAcc)for eachRecordin the table.
The term returned fromFunctionis used as the second argument in the next call toFunction.

foldl returns the same term as the last call toFunctionreturned.

foldr(Function, Acc, Table) -> NewAcc | transaction abort

Works exactly like foldl/3 but iterates the table in the opposite order for theordered_settable
type. For all other table types,foldr/3 andfoldl/3 are synonyms.

force_load_table(Tab) -> yes | ErrorDescription

The Mnesia algorithm for table load can lead to a situation where a table cannot be loaded.
This situation occurs when a node is started and Mnesia concludes, or suspects, that another
copy of the table was active after this local copy became inactive because of a system crash.

If this situation is not acceptable, this function can be used to override the strategy of the Mne-
sia table load algorithm. This can lead to a situation where some transaction effects are lost
with an inconsistent database as result, but for some applications high availability is more
important than consistent data.

index_match_object(Pattern, Pos) -> transaction abort | ObjList

Startsmnesia:index_match_object(Tab, Pattern, Pos, read), whereTab is element(1, Pattern).

index_match_object(Tab, Pattern, Pos, LockKind) -> transaction abort | ObjList

In a manner similar to the functionmnesia:index_read/3, any index information can be used
when trying to match records. This function takes a pattern that obeys the same rules as the
functionmnesia:match_object/3, except that this function requires the following conditions:

* The tableTab must have an index on positionPos.

* The element in positionPos in Pattern must be bound.Pos is an integer (#record.Field)
or an attribute name.

The two index search functions described here are automatically started when searching tables

Ericsson AB mnesia 4.15 12

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

with qlc list comprehensions and also when using the low-level mnesia:[dirty_]match_object
functions.

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires a lock of typeLockKindon the entire table or on a single record.
Currently, the lock typeread is supported.

index_read(Tab, SecondaryKey, Pos) -> transaction abort | RecordList

Assume that there is an index on position Pos for a certain record type. This function can be
used to read the records without knowing the actual key for the record. For example, with an
index in position 1 of tableperson, the call mnesia:index_read(person, 36, #person.age)
returns a list of all persons with age 36.Pos can also be an attribute name (atom), but if the
notationmnesia:index_read(person, 36, age) is used, the field position is searched for in run-
time, for each call.

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires a read lock on the entire table.

info() -> ok

Prints system information on the terminal. This function can be used even if Mnesia is not
started. However, more information is displayed if Mnesia is started.

install_fallback(Opaque) -> ok | {error,Reason}

Callsmnesia:install_fallback(Opaque, Args), whereArgs is [{scope, global}] .

install_fallback(Opaque), BackupMod) -> ok | {error,Reason}

Calls mnesia:install_fallback(Opaque, Args), whereArgs is [{scope, global}, {module, Back-
upMod}].

install_fallback(Opaque, Args) -> ok | {error,Reason}

Installs a backup as fallback. The fallback is used to restore the database at the next startup.
Installation of fallbacks requires Erlang to be operational on all the involved nodes, but it does
not matter if Mnesia is running or not. The installation of the fallback fails if the local node is
not one of the disc-resident nodes in the backup.

Args is a list of the following tuples:

* {module, BackupMod}. All accesses of the backup media are performed through a call-
back module namedBackupMod. ArgumentOpaqueis forwarded to the callback module,
which can interpret it as it wishes. The default callback module is calledmnesia_backup
and it interprets argumentOpaqueas a local filename. The default for this module is also
configurable through configuration parameter-mnesia mnesia_backup.

* {scope, Scope}. The Scopeof a fallback is eitherglobal for the entire database orlocal
for one node. By default, the installation of a fallback is a global operation, which either
is performed on all nodes with a disc-resident schema or none. Which nodes that are
disc-resident is determined from the schema information in the backup.

If Scopeof the operation islocal, the fallback is only installed on the local node.

* {mnesia_dir, AlternateDir}. This argument is only valid if the scope of the installation is
local. Normally the installation of a fallback is targeted to the Mnesia directory, as con-
figured with configuration parameter-mnesia dir. But by explicitly supplying anAlter-
nateDir, the fallback is installed there regardless of the Mnesia directory configuration
parameter setting. After installation of a fallback on an alternative Mnesia directory, that
directory is fully prepared for use as an active Mnesia directory.

This is a dangerous feature that must be used with care. By unintentional mixing of

Ericsson AB mnesia 4.15 13

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

directories, you can easily end up with an inconsistent database, if the same backup is
installed on more than one directory.

is_transaction() -> boolean

When this function is executed inside a transaction-context, it returnstrue, otherwisefalse.

last(Tab) -> Key | transaction abort

Works exactly like mnesia:first/1, but returns the last object in Erlang term order for the
ordered_settable type. For all other table types,mnesia:first/1and mnesia:last/1are syn-
onyms.

load_textfile(Filename)

Loads a series of definitions and data found in the text file (generated withmne-
sia:dump_to_textfile/1) into Mnesia. This function also starts Mnesia and possibly creates a
new schema. This function is intended for educational purposes only. It is recommended to
use other functions to deal with real backups.

lock(LockItem, LockKind) -> Nodes | ok | transaction abort

Write locks are normally acquired on all nodes where a replica of the table resides (and is
active). Read locks are acquired on one node (the local node if a local replica exists). Most of
the context-sensitive access functions acquire an implicit lock if they are started in a transac-
tion-context. The granularity of a lock can either be a single record or an entire table.

The normal use is to call the function without checking the return value, as it exits if it fails
and the transaction is restarted by the transaction manager. It returns all the locked nodes if a
write lock is acquired andok if it was a read lock.

The functionmnesia:lock/2is intended to support explicit locking on tables, but is also
intended for situations when locks need to be acquired regardless of how tables are replicated.
Currently, two kinds ofLockKindare supported:

write:
Write locks are exclusive. This means that if one transaction manages to acquire a write
lock on an item, no other transaction can acquire any kind of lock on the same item.

read:
Read locks can be shared. This means that if one transaction manages to acquire a read
lock on an item, other transactions can also acquire a read lock on the same item. How-
ev er, if someone has a read lock, no one can acquire a write lock at the same item. If
someone has a write lock, no one can acquire either a read lock or a write lock at the
same item.

Conflicting lock requests are automatically queued if there is no risk of a deadlock. Otherwise
the transaction must be terminated and executed again. Mnesia does this automatically as long
as the upper limit of the maximumretries is not reached. For details, seemnesia:transac-
tion/3.

For the sake of completeness, sticky write locks are also described here even if a sticky write
lock is not supported by this function:

sticky_write:
Sticky write locks are a mechanism that can be used to optimize write lock acquisition. If
your application uses replicated tables mainly for fault tolerance (as opposed to read
access optimization purpose), sticky locks can be the best option available.

When a sticky write lock is acquired, all nodes are informed which node is locked. Then,
sticky lock requests from the same node are performed as a local operation without any
communication with other nodes. The sticky lock lingers on the node even after the trans-
action ends. For details, see the User’s Guide.

Ericsson AB mnesia 4.15 14

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

Currently, this function supports two kinds ofLockItem:

{table, Tab}:
This acquires a lock of typeLockKindon the entire tableTab.

{global, GlobalKey, Nodes}:
This acquires a lock of typeLockKind on the global resourceGlobalKey. The lock is
acquired on all active nodes in theNodeslist.

Locks are released when the outermost transaction ends.

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires locks, otherwise it ignores the request.

match_object(Pattern) -> transaction abort | RecList

Callsmnesia:match_object(Tab, Pattern, read), whereTab is element(1, Pattern).

match_object(Tab, Pattern, LockKind) -> transaction abort | RecList

Takes a pattern with "don’t care" variables denoted as a’_’ parameter. This function returns a
list of records that matched the pattern. Since the second element of a record in a table is con-
sidered to be the key for the record, the performance of this function depends on whether this
key is bound or not.

For example, the callmnesia:match_object(person, {person, ’_’, 36, ’_’, ’_’}, read)returns a
list of all person records with anagefield of 36.

The functionmnesia:match_object/3automatically uses indexes if these exist. However, no
heuristics are performed to select the best index.

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires a lock of typeLockKindon the entire table or a single record. Cur-
rently, the lock typeread is supported.

move_table_copy(Tab, From, To) -> {aborted, Reason} | {atomic, ok}

Moves the copy of tableTab from nodeFr om to nodeTo.

The storage type is preserved. For example, a RAM table moved from one node remains a
RAM on the new node. Other transactions can still read and write in the table while it is being
moved.

This function cannot be used onlocal_contenttables.

next(Tab, Key) -> Key | transaction abort

Trav erses a table and performs operations on all records in the table. When the end of the table
is reached, the special key ’$end_of_table’is returned. Otherwise the function returns a key
that can be used to read the actual record.

prev(Tab, Key) -> Key | transaction abort

Works exactly like mnesia:next/2, but returns the previous object in Erlang term order for the
ordered_settable type. For all other table types,mnesia:next/2and mnesia:prev/2 are syn-
onyms.

read({Tab, Key}) -> transaction abort | RecordList

Calls functionmnesia:read(Tab, Key, read).

read(Tab, Key) -> transaction abort | RecordList

Calls functionmnesia:read(Tab, Key, read).

Ericsson AB mnesia 4.15 15

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

read(Tab, Key, LockKind) -> transaction abort | RecordList

Reads all records from tableTab with key Ke y. This function has the same semantics regard-
less of the location ofTab. If the table is of typebag, the functionmnesia:read(Tab, Key) can
return an arbitrarily long list. If the table is of typeset, the list is either of length 1, or[] .

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires a lock of typeLockKind. Currently, the lock typesread, write, and
sticky_writeare supported.

If the user wants to update the record, it is more efficient to usewrite/sticky_write as theLock-
Kind. If majority checking is active on the table, it is checked as soon as a write lock is
attempted. This can be used to end quickly if the majority condition is not met.

read_lock_table(Tab) -> ok | transaction abort

Calls the functionmnesia:lock({table, Tab}, read).

report_event(Event) -> ok

When tracing a system of Mnesia applications it is useful to be able to interleave Mnesia own
ev ents with application-related events that give information about the application context.

Whenever the application begins a new and demanding Mnesia task, or if it enters a new inter-
esting phase in its execution, it can be a good idea to usemnesia:report_event/1. Eventcan be
any term and generates a{mnesia_user, Event}ev ent for any processes that subscribe to Mne-
sia system events.

restore(Opaque, Args) -> {atomic, RestoredTabs} |{aborted, Reason}

With this function, tables can be restored online from a backup without restarting Mnesia.
Opaqueis forwarded to the backup module.Args is a list of the following tuples:

* {module,BackupMod}. The backup moduleBackupModis used to access the backup
media. If omitted, the default backup module is used.

* {skip_tables, TabList}, whereTabList is a list of tables that is not to be read from the
backup.

* {clear_tables, TabList}, whereTabList is a list of tables that is to be cleared before the
records from the backup are inserted. That is, all records in the tables are deleted before
the tables are restored. Schema information about the tables is not cleared or read from
the backup.

* {keep_tables, TabList}, whereTabList is a list of tables that is not to be cleared before the
records from the backup are inserted. That is, the records in the backup are added to the
records in the table. Schema information about the tables is not cleared or read from the
backup.

* {recreate_tables, TabList}, whereTabList is a list of tables that is to be recreated before
the records from the backup are inserted. The tables are first deleted and then created
with the schema information from the backup. All the nodes in the backup need to be
operational.

* {default_op, Operation}, where Operation is either of the operationsskip_tables,
clear_tables, keep_tables, or recreate_tables. The default operation specifies which oper-
ation that is to be used on tables from the backup that is not specified in any of the men-
tioned lists. If omitted, operationclear_tablesis used.

The affected tables are write-locked during the restoration. However, reg ardless of the lock
conflicts caused by this, the applications can continue to do their work while the restoration is
being performed. The restoration is performed as one single transaction.

If the database is huge, it it not always possible to restore it online. In such cases, restore the
old database by installing a fallback and then restart.

Ericsson AB mnesia 4.15 16

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

s_delete({Tab, Key}) -> ok | transaction abort

Calls the functionmnesia:delete(Tab, Key, sticky_write)

s_delete_object(Record) -> ok | transaction abort

Calls the functionmnesia:delete_object(Tab, Record, sticky_write), whereTab is element(1,
Record).

s_write(Record) -> ok | transaction abort

Calls the functionmnesia:write(Tab, Record, sticky_write), whereTab is element(1, Record).

schema() -> ok

Prints information about all table definitions on the terminal.

schema(Tab) -> ok

Prints information about one table definition on the terminal.

select(Tab, MatchSpec [, Lock]) -> transaction abort | [Object]

Matches the objects in tableTab using amatch_specas described in theets:select/3. Option-
ally a lockread or write can be given as the third argument. Default isread. The return value
depends onMatchSpec.

Notice that for best performance,select is to be used before any modifying operations are
done on that table in the same transaction. That is, do not usewrite or deletebefore aselect.

In its simplest forms, thematch_speclook as follows:

* MatchSpec = [MatchFunction]

* MatchFunction = {MatchHead, [Guard], [Result]}

* MatchHead = tuple() | record()

* Guard = {"Guardtest name", ...}

* Result = "Term construct"

For a complete description ofselect, see theERTS User’s Guide and theets manual page in
STDLIB.

For example, to find the names of all male persons older than 30 in tableTab:

MatchHead = #person{name=’$1’, sex=male, age=’$2’, _=’_’},
Guard = {’>’, ’$2’, 30},
Result = ’$1’,
mnesia:select(Tab,[{MatchHead, [Guard], [Result]}]),

select(Tab, MatchSpec, NObjects, Lock) -> transaction abort | {[Object],Cont} | ’$end_of_table’

Matches the objects in tableTab using amatch_specas described in theERTS User’s Guide,
and returns a chunk of terms and a continuation. The wanted number of returned terms is
specified by argumentNObjects. The lock argument can beread or write. The continuation is
to be used as argument tomnesia:select/1, if more or all answers are needed.

Notice that for best performance,select is to be used before any modifying operations are
done on that table in the same transaction. That is, do not usemnesia:writeor mnesia:delete
before amnesia:select. For efficiency, NObjectsis a recommendation only and the result can
contain anything from an empty list to all available results.

select(Cont) -> transaction abort | {[Object],Cont} | ’$end_of_table’

Selects more objects with the match specification initiated bymnesia:select/4.

Ericsson AB mnesia 4.15 17

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

Notice that any modifying operations, that is,mnesia:writeor mnesia:delete, that are done
between themnesia:select/4andmnesia:select/1calls are not visible in the result.

set_debug_level(Level) -> OldLevel

Changes the internal debug level of Mnesia. For details, seeSection Configuration Parame-
ters.

set_master_nodes(MasterNodes) -> ok | {error, Reason}

For each table Mnesia determines its replica nodes (TabNodes) and startsmnesia:set_mas-
ter_nodes(Tab, TabMasterNodes). whereTabMasterNodesis the intersection ofMasterNodes
andTabNodes. For semantics, seemnesia:set_master_nodes/2.

set_master_nodes(Tab, MasterNodes) -> ok | {error, Reason}

If the application detects a communication failure (in a potentially partitioned network) that
can have caused an inconsistent database, it can use the functionmnesia:set_mas-
ter_nodes(Tab, MasterNodes)to define from which nodes each table is to be loaded. At
startup, the Mnesia normal table load algorithm is bypassed and the table is loaded from one
of the master nodes defined for the table, regardless of when and if Mnesia terminated on
other nodes.MasterNodescan only contain nodes where the table has a replica. If theMas-
terNodeslist is empty, the master node recovery mechanism for the particular table is reset,
and the normal load mechanism is used at the next restart.

The master node setting is always local. It can be changed regardless if Mnesia is started or
not.

The database can also become inconsistent if configuration parametermax_wait_for_decision
is used or ifmnesia:force_load_table/1is used.

snmp_close_table(Tab) -> {aborted, R} | {atomic, ok}

Removes the possibility for SNMP to manipulate the table.

snmp_get_mnesia_key(Tab, RowIndex) -> {ok, Key} | undefined

Types:

Tab ::= atom()
RowIndex ::= [integer()]
Ke y ::= key() | {key(), key(), ...}
key() ::= integer() | string() | [integer()]

Transforms an SNMP index to the corresponding Mnesia key. If the SNMP table has multiple
keys, the key is a tuple of the key columns.

snmp_get_next_index(Tab, RowIndex) -> {ok, NextIndex} | endOfTable

Types:

Tab ::= atom()
RowIndex ::= [integer()]
NextIndex ::= [integer()]

RowIndexcan specify a non-existing row. Specifically, it can be the empty list. Returns the
index of the next lexicographical row. IfRowIndexis the empty list, this function returns the
index of the first row in the table.

snmp_get_row(Tab, RowIndex) -> {ok, Row} | undefined

Types:

Ericsson AB mnesia 4.15 18

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

Tab ::= atom()
RowIndex ::= [integer()]
Row ::= record(Tab)

Reads a row by its SNMP index. This index is specified as an SNMP Object Identifier, a list of
integers.

snmp_open_table(Tab, SnmpStruct) -> {aborted, R} | {atomic, ok}

Types:

Tab ::= atom()
SnmpStruct ::= [{key, type()}]
type() ::= type_spec() | {type_spec(), type_spec(), ...}
type_spec() ::= fix_string | string | integer

A direct one-to-one mapping can be established between Mnesia tables and SNMP tables.
Many telecommunication applications are controlled and monitored by the SNMP protocol.
This connection between Mnesia and SNMP makes it simple and convenient to achieve this
mapping.

ArgumentSnmpStructis a list of SNMP information. Currently, the only information needed
is information about the key types in the table. Multiple keys cannot be handled in Mnesia, but
many SNMP tables have multiple keys. Therefore, the following convention is used: if a table
has multiple keys, these must always be stored as a tuple of the keys. Information about the
key types is specified as a tuple of atoms describing the types. The only significant type is
fix_string. This means that a string has a fixed size.

For example, the following causes tablepersonto be ordered as an SNMP table:

mnesia:snmp_open_table(person, [{key, string}])

Consider the following schema for a table of company employees. Each employee is identified
by department number and name. The other table column stores the telephone number:

mnesia:create_table(employee,
[{snmp, [{key, { integer, string}}]},
{attributes, record_info(fields, employees)}]),

The corresponding SNMP table would have three columns:department, name, and telno.

An option is to have table columns that are not visible through the SNMP protocol. These col-
umns must be the last columns of the table. In the previous example, the SNMP table could
have columnsdepartmentandnameonly. The application could then use columntelno inter-
nally, but it would not be visible to the SNMP managers.

In a table monitored by SNMP, all elements must be integers, strings, or lists of integers.

When a table is SNMP ordered, modifications are more expensive than usual, O(logN). Also,
more memory is used.

Notice that only the lexicographical SNMP ordering is implemented in Mnesia, not the actual
SNMP monitoring.

start() -> ok | {error, Reason}

The startup procedure for a set of Mnesia nodes is a fairly complicated operation. A Mnesia
system consists of a set of nodes, with Mnesia started locally on all participating nodes. Nor-
mally, each node has a directory where all the Mnesia files are written. This directory is
referred to as the Mnesia directory. Mnesia can also be started on disc-less nodes. For more
information about disc-less nodes, seemnesia:create_schema/1and the User’s Guide.

The set of nodes that makes up a Mnesia system is kept in a schema. Mnesia nodes can be
added to or removed from the schema. The initial schema is normally created on disc with the
functionmnesia:create_schema/1. On disc-less nodes, a tiny default schema is generated each
time Mnesia is started. During the startup procedure, Mnesia exchanges schema information
between the nodes to verify that the table definitions are compatible.

Ericsson AB mnesia 4.15 19

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

Each schema has a unique cookie, which can be regarded as a unique schema identifier. The
cookie must be the same on all nodes where Mnesia is supposed to run. For details, see the
User’s Guide.

The schema file and all other files that Mnesia needs are kept in the Mnesia directory. The
command-line option-mnesia dir Dircan be used to specify the location of this directory to
the Mnesia system. If no such command-line option is found, the name of the directory
defaults toMnesia.Node.

application:start(mnesia)can also be used.

stop() -> stopped

Stops Mnesia locally on the current node.

application:stop(mnesia)can also be used.

subscribe(EventCategory) -> {ok, Node} | {error, Reason}

Ensures that a copy of all events of typeEventCategoryis sent to the caller. The available
ev ent types are described in theUser’s Guide.

sync_dirty(Fun, [, Args]) -> ResultOfFun | exit(Reason)

Calls theFun in a context that is not protected by a transaction. The Mnesia function calls per-
formed in theFun are mapped to the corresponding dirty functions. It is performed in almost
the same context asmnesia:async_dirty/1,2. The difference is that the operations are per-
formed synchronously. The caller waits for the updates to be performed on all active replicas
before theFun returns. For details, seemnesia:activity/4and the User’s Guide.

sync_log() -> ok | {error, Reason}

Ensures that the local transaction log file is synced to disk. On a single node system, data writ-
ten to disk tables since the last dump can be lost if there is a power outage. Seedump_log/0.

sync_transaction(Fun, [[, Args], Retries]) -> {aborted, Reason} | {atomic, ResultOfFun}

Waits until data have been committed and logged to disk (if disk is used) on every involved
node before it returns, otherwise it behaves as mnesia:transaction/[1,2,3].

This functionality can be used to avoid that one process overloads a database on another node.

system_info(InfoKey) -> Info | exit({aborted, Reason})

Returns information about the Mnesia system, such as transaction statistics,db_nodes, and
configuration parameters. The valid keys are as follows:

* all. Returns a list of all local system information. Each element is a{InfoKey, InfoVal}
tuple.

New InfoKeys can be added and old undocumentedInfoKeys can be removed without
notice.

* access_module. Returns the name of module that is configured to be the activity access
callback module.

* auto_repair. Returnstrue or false to indicate if Mnesia is configured to start the auto-
repair facility on corrupted disc files.

* backup_module. Returns the name of the module that is configured to be the backup call-
back module.

* checkpoints. Returns a list of the names of the checkpoints currently active on this node.

Ericsson AB mnesia 4.15 20

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

* event_module. Returns the name of the module that is the event handler callback module.

* db_nodes. Returns the nodes that make up the persistent database. Disc-less nodes are
only included in the list of nodes if they explicitly have been added to the schema, for
example, withmnesia:add_table_copy/3. The function can be started even if Mnesia is
not yet running.

* debug. Returns the current debug level of Mnesia.

* directory. Returns the name of the Mnesia directory. It can be called even if Mnesia is not
yet running.

* dump_log_load_regulation. Returns a boolean that tells if Mnesia is configured to regu-
late the dumper process load.

This feature is temporary and will be removed in future releases.

* dump_log_time_threshold. Returns the time threshold for transaction log dumps in mil-
liseconds.

* dump_log_update_in_place. Returns a boolean that tells if Mnesia is configured to per-
form the updates in the Dets files directly, or if the updates are to be performed in a copy
of the Dets files.

* dump_log_write_threshold. Returns the write threshold for transaction log dumps as the
number of writes to the transaction log.

* extra_db_nodes. Returns a list of extradb_nodesto be contacted at startup.

* fallback_activated. Returnstrue if a fallback is activated, otherwisefalse.

* held_locks. Returns a list of all locks held by the local Mnesia lock manager.

* is_running. Returnsyesor no to indicate if Mnesia is running. It can also returnstarting
or stopping. Can be called even if Mnesia is not yet running.

* local_tables. Returns a list of all tables that are configured to reside locally.

* lock_queue. Returns a list of all transactions that are queued for execution by the local
lock manager.

* log_version. Returns the version number of the Mnesia transaction log format.

* master_node_tables. Returns a list of all tables with at least one master node.

* protocol_version. Returns the version number of the Mnesia inter-process communica-
tion protocol.

* running_db_nodes. Returns a list of nodes where Mnesia currently is running. This func-
tion can be called even if Mnesia is not yet running, but it then has slightly different
semantics.

If Mnesia is down on the local node, the function returns those otherdb_nodesand
extra_db_nodesthat for the moment are operational.

If Mnesia is started, the function returns those nodes that Mnesia on the local node is
fully connected to. Only those nodes that Mnesia has exchanged schema information
with are included asrunning_db_nodes. After the merge of schemas, the local Mnesia
system is fully operable and applications can perform access of remote replicas. Before
the schema merge, Mnesia only operates locally. Sometimes there are more nodes
included in therunning_db_nodeslist than alldb_nodesandextra_db_nodestogether.

* schema_location. Returns the initial schema location.

* subscribers. Returns a list of local processes currently subscribing to system events.

* tables. Returns a list of all locally known tables.

* transactions. Returns a list of all currently active local transactions.

Ericsson AB mnesia 4.15 21

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

* transaction_failures. Returns a number that indicates how many transactions have failed
since Mnesia was started.

* transaction_commits. Returns a number that indicates how many transactions have termi-
nated successfully since Mnesia was started.

* transaction_restarts. Returns a number that indicates how many transactions have been
restarted since Mnesia was started.

* transaction_log_writes. Returns a number that indicates how many write operations that
have been performed to the transaction log since startup.

* use_dir. Returns a boolean that indicates if the Mnesia directory is used or not. Can be
started even if Mnesia is not yet running.

* version. Returns the current version number of Mnesia.

table(Tab [,[Option]]) -> QueryHandle

Returns a Query List Comprehension (QLC) query handle, see theqlc(3erl) manual page in
STDLIB. The moduleqlc implements a query language that can use Mnesia tables as sources
of data. Callingmnesia:table/1,2is the means to make themnesiatableTab usable to QLC.

Optioncan contain Mnesia options or QLC options. Mnesia recognizes the following options
(any other option is forwarded to QLC).

* {lock, Lock}, wherelockcan bereador write. Default isread.

* {n_objects,Number}, wheren_objectsspecifies (roughly) the number of objects returned
from Mnesia to QLC. Queries to remote tables can need a larger chunk to reduce network
overhead. By default,100objects at a time are returned.

* {traverse, SelectMethod}, wheretraversedetermines the method to traverse the whole ta-
ble (if needed). The default method isselect.

There are two alternatives for select:

* select. The table is traversed by callingmnesia:select/4andmnesia:select/1. The match
specification (the second argument ofselect/3) is assembled by QLC: simple filters are
translated into equivalent match specifications. More complicated filters need to be
applied to all objects returned byselect/3given a match specification that matches all
objects.

* {select, MatchSpec}. As for select, the table is traversed by callingmnesia:select/3and
mnesia:select/1. The difference is that the match specification is explicitly given. This is
how to state match specifications that cannot easily be expressed within the syntax pro-
vided by QLC.

table_info(Tab, InfoKey) -> Info | exit({aborted, Reason})

The table_info/2function takes two arguments. The first is the name of a Mnesia table. The
second is one of the following keys:

* all. Returns a list of all local table information. Each element is a{InfoKey, ItemVal}
tuple.

New InfoItems can be added and old undocumentedInfoItems can be removed without
notice.

* access_mode. Returns the access mode of the table. The access mode can beread_onlyor
read_write.

* arity. Returns the arity of records in the table as specified in the schema.

* attributes. Returns the table attribute names that are specified in the schema.

* checkpoints. Returns the names of the currently active checkpoints, which involve this ta-
ble on this node.

* cookie. Returns a table cookie, which is a unique system-generated identifier for the ta-
ble. The cookie is used internally to ensure that two different table definitions using the

Ericsson AB mnesia 4.15 22

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

same table name cannot accidentally be intermixed. The cookie is generated when the ta-
ble is created initially.

* disc_copies. Returns the nodes where adisc_copyof the table resides according to the
schema.

* disc_only_copies. Returns the nodes where adisc_only_copyof the table resides accord-
ing to the schema.

* index. Returns the list of index position integers for the table.

* load_node. Returns the name of the node that Mnesia loaded the table from. The struc-
ture of the returned value is unspecified, but can be useful for debugging purposes.

* load_order. Returns the load order priority of the table. It is an integer and defaults to0
(zero).

* load_reason. Returns the reason of why Mnesia decided to load the table. The structure
of the returned value is unspecified, but can be useful for debugging purposes.

* local_content. Returnstrue or false to indicate if the table is configured to have locally
unique content on each node.

* master_nodes. Returns the master nodes of a table.

* memory. Returns the number of words allocated to the table on this node.

* ram_copies. Returns the nodes where aram_copyof the table resides according to the
schema.

* record_name. Returns the record name, common for all records in the table.

* size. Returns the number of records inserted in the table.

* snmp. Returns the SNMP struct.[] means that the table currently has no SNMP proper-
ties.

* storage_type. Returns the local storage type of the table. It can bedisc_copies,
ram_copies, disc_only_copies, or the atomunknown. unknownis returned for all tables
that only reside remotely.

* subscribers. Returns a list of local processes currently subscribing to local table events
that involve this table on this node.

* type. Returns the table type, which isbag, set, or ordered_set.

* user_properties. Returns the user-associated table properties of the table. It is a list of the
stored property records.

* version. Returns the current version of the table definition. The table version is incre-
mented when the table definition is changed. The table definition can be incremented
directly when it has been changed in a schema transaction, or when a committed table
definition is merged with table definitions from other nodes during startup.

* where_to_read. Returns the node where the table can be read. If value nowhere is
returned, either the table is not loaded or it resides at a remote node that is not running.

* where_to_write. Returns a list of the nodes that currently hold an active replica of the ta-
ble.

* wild_pattern. Returns a structure that can be given to the various match functions for a
certain table. A record tuple is where all record fields have value’_’ .

transaction(Fun [[, Args], Retries]) -> {aborted, Reason} | {atomic, ResultOfFun}

Executes the functional objectFunwith argumentsArgsas a transaction.

The code that executes inside the transaction can consist of a series of table manipulation
functions. If something goes wrong inside the transaction as a result of a user error or a certain
table not being available, the entire transaction is terminated and the functiontransaction/1
returns the tuple{aborted, Reason}.

If all is going well,{atomic, ResultOfFun}is returned, whereResultOfFunis the value of the
last expression inFun.

Ericsson AB mnesia 4.15 23

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

A function that adds a family to the database can be written as follows if there is a structure
{family, Father, Mother, ChildrenList}:

add_family({family, F, M, Children}) ->
ChildOids = lists:map(fun oid/1, Children),
Trans = fun() ->

mnesia:write(F#person{children = ChildOids},
mnesia:write(M#person{children = ChildOids},
Write = fun(Child) -> mnesia:write(Child) end,
lists:foreach(Write, Children)

end,
mnesia:transaction(Trans).

oid(Rec) -> {element(1, Rec), element(2, Rec)}.

This code adds a set of people to the database. Running this code within one transaction
ensures that either the whole family is added to the database, or the whole transaction termi-
nates. For example, if the last child is badly formatted, or the executing process terminates
because of an’EXIT’ signal while executing the family code, the transaction terminates. Thus,
the situation where half a family is added can never occur.

It is also useful to update the database within a transaction if several processes concurrently
update the same records. For example, the functionraise(Name, Amount), which addsAmount
to the salary field of a person, is to be implemented as follows:

raise(Name, Amount) ->
mnesia:transaction(fun() ->

case mnesia:wread({person, Name}) of
[P] ->

Salary = Amount + P#person.salary,
P2 = P#person{salary = Salary},
mnesia:write(P2);

_ ->
mnesia:abort("No such person")

end
end).

When this function executes within a transaction, several processes running on different nodes
can concurrently execute the functionraise/2without interfering with each other.

Since Mnesia detects deadlocks, a transaction can be restarted any number of times. This func-
tion attempts a restart as specified inRetries. Retriesmust be an integer greater than 0 or the
atominfinity. Default isinfinity.

transform_table(Tab, Fun, NewAttributeList, NewRecordName) -> {aborted, R} | {atomic, ok}

Applies argumentFun to all records in the table.Fun is a function that takes a record of the
old type and returns a transformed record of the new type. ArgumentFun can also be the atom
ignore, which indicates that only the metadata about the table is updated. Use ofignore is not
recommended, but included as a possibility for the user do to an own transformation.

NewAttributeListandNewRecordNamespecify the attributes and the new record type of the
converted table. Table name always remains unchanged. Ifrecord_nameis changed, only the
Mnesia functions that use table identifiers work, for example,mnesia:write/3works, but not
mnesia:write/1.

transform_table(Tab, Fun, NewAttributeList) -> {aborted, R} | {atomic, ok}

Calls mnesia:transform_table(Tab, Fun, NewAttributeList, RecName), where RecNameis
mnesia:table_info(Tab, record_name).

traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc) -> {ok, LastAcc} | {error,
Reason}

Ericsson AB mnesia 4.15 24

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

Iterates over a backup, either to transform it into a new backup, or read it. The arguments are
explained briefly here. For details, see the User’s Guide.

* SourceModandTarg etMod are the names of the modules that actually access the backup
media.

* SourceandTarg et are opaque data used exclusively by modulesSourceModandTarg et-
Mod to initialize the backup media.

* Acc is an initial accumulator value.

* Fun(BackupItems, Acc)is applied to each item in the backup. TheFun must return a
tuple {BackupItems,NewAcc}, where BackupItemsis a list of valid backup items, and
NewAccis a new accumulator value. The returned backup items are written in the target
backup.

* LastAccis the last accumulator value. This is the lastNewAccvalue that was returned by
Fun.

uninstall_fallback() -> ok | {error,Reason}

Calls the functionmnesia:uninstall_fallback([{scope, global}]) .

uninstall_fallback(Args) -> ok | {error,Reason}

Deinstalls a fallback before it has been used to restore the database. This is normally a distrib-
uted operation that is either performed on all nodes with disc resident schema, or none. Unin-
stallation of fallbacks requires Erlang to be operational on all involved nodes, but it does not
matter if Mnesia is running or not. Which nodes that are considered as disc-resident nodes is
determined from the schema information in the local fallback.

Args is a list of the following tuples:

* {module, BackupMod}. For semantics, seemnesia:install_fallback/2.

* {scope, Scope}. For semantics, seemnesia:install_fallback/2.

* {mnesia_dir, AlternateDir}. For semantics, seemnesia:install_fallback/2.

unsubscribe(EventCategory) -> {ok, Node} | {error, Reason}

Stops sending events of typeEventCategoryto the caller.

Nodeis the local node.

wait_for_tables(TabList, Timeout) -> ok | {timeout, BadTabList} | {error, Reason}

Some applications need to wait for certain tables to be accessible to do useful work. mne-
sia:wait_for_tables/2either hangs until all tables inTabList are accessible, or untiltimeoutis
reached.

wread({Tab, Key}) -> transaction abort | RecordList

Calls the functionmnesia:read(Tab, Key, write).

write(Record) -> transaction abort | ok

Calls the functionmnesia:write(Tab, Record, write), whereTab is element(1, Record).

write(Tab, Record, LockKind) -> transaction abort | ok

Writes recordRecordto tableTab.

The function returnsok, or terminates if an error occurs. For example, the transaction termi-
nates if nopersontable exists.

The semantics of this function is context-sensitive. For details, seemnesia:activity/4. In trans-
action-context, it acquires a lock of typeLockKind. The lock typeswrite andsticky_write are
supported.

Ericsson AB mnesia 4.15 25

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

write_lock_table(Tab) -> ok | transaction abort

Calls the functionmnesia:lock({table, Tab}, write).

CONFIGURATION PARAMETERS
Mnesia reads the following application configuration parameters:

* -mnesia access_module Module. The name of the Mnesia activity access callback module. Default
is mnesia.

* -mnesia auto_repair true | false. This flag controls if Mnesia automatically tries to repair files that
have not been properly closed. Default istrue.

* -mnesia backup_module Module. The name of the Mnesia backup callback module. Default is
mnesia_backup.

* -mnesia debug Level. Controls the debug level of Mnesia. The possible values are as follows:

none:
No trace outputs. This is the default.

verbose:
Activates tracing of important debug events. These events generate{mnesia_info, Format, Args}
system events. Processes can subscribe to these events withmnesia:subscribe/1. The events are
always sent to the Mnesia event handler.

debug:
Activates all events at the verbose level plus full trace of all debug events. These debug events
generate{mnesia_info, Format, Args} system events. Processes can subscribe to these events
with mnesia:subscribe/1. The events are always sent to the Mnesia event handler. On this debug
level, the Mnesia event handler starts subscribing to updates in the schema table.

trace:
Activates all events at the debug level. On this level, the Mnesia event handler starts subscribing
to updates on all Mnesia tables. This level is intended only for debugging small toy systems, as
many large events can be generated.

false:
An alias for none.

true:
An alias for debug.

* -mnesia core_dir Directory. The name of the directory where Mnesia core files is stored, or false.
Setting it implies that also RAM-only nodes generate a core file if a crash occurs.

* -mnesia dc_dump_limit Number. Controls how often disc_copiestables are dumped from mem-
ory. Tables are dumped whenfilesize(Log) > (filesize(Tab)/Dc_dump_limit). Lower values reduce
CPU overhead but increase disk space and startup times. Default is 4.

* -mnesia dir Directory. The name of the directory where all Mnesia data is stored. The directory
name must be unique for the current node. Two nodes must never share the the same Mnesia
directory. The results are unpredictable.

* -mnesia dump_disc_copies_at_startup true | false. If set to false, this disables the dumping of
disc_copiestables during startup while tables are being loaded. The default is true.

* -mnesia dump_log_load_regulation true | false. Controls if log dumps are to be performed as fast
as possible, or if the dumper is to do its own load regulation. Default isfalse.

This feature is temporary and will be removed in a future release

* -mnesia dump_log_update_in_place true | false. Controls if log dumps are performed on a copy of
the original data file, or if the log dump is performed on the original data file. Default istrue

*

-mnesia dump_log_write_threshold Max. Max is an integer that specifies the maximum number of

Ericsson AB mnesia 4.15 26

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

writes allowed to the transaction log before a new dump of the log is performed. Default is100 log
writes.

*

-mnesia dump_log_time_threshold Max. Max is an integer that specifies the dump log interval in
milliseconds. Default is 3 minutes. If a dump has not been performed within
dump_log_time_thresholdmilliseconds, a new dump is performed regardless of the number of
writes performed.

* -mnesia event_module Module. The name of the Mnesia event handler callback module. Default is
mnesia_event.

* -mnesia extra_db_nodes Nodesspecifies a list of nodes, in addition to the ones found in the
schema, with which Mnesia is also to establish contact. Default is[] (empty list).

* -mnesia fallback_error_function {UserModule, UserFunc}. Specifies a user-supplied callback
function, which is called if a fallback is installed and Mnesia goes down on another node. Mnesia
calls the function with one argument, the name of the dying node, for example,UserModule:User-
Func(DyingNode). Mnesia must be restarted, otherwise the database can be inconsistent. The
default behavior is to terminate Mnesia.

* -mnesia max_wait_for_decision Timeout. Specifies how long Mnesia waits for other nodes to
share their knowledge about the outcome of an unclear transaction. By default, Timeoutis set to
the atominfinity. This implies that if Mnesia upon startup detects a "heavyweight transaction"
whose outcome is unclear, the local Mnesia waits until Mnesia is started on some (in the worst
case all) of the other nodes that were involved in the interrupted transaction. This is a rare situa-
tion, but if it occurs, Mnesia does not guess if the transaction on the other nodes was committed or
terminated. Mnesia waits until it knows the outcome and then acts accordingly.

If Timeoutis set to an integer value in milliseconds, Mnesia forces "heavyweight transactions" to
be finished, even if the outcome of the transaction for the moment is unclear. AfterTimeoutmil-
liseconds, Mnesia commits or terminates the transaction and continues with the startup. This can
lead to a situation where the transaction is committed on some nodes and terminated on other
nodes. If the transaction is a schema transaction, the inconsistency can be fatal.

* -mnesia no_table_loaders NUMBER. Specifies the number of parallel table loaders during start.
More loaders can be good if the network latency is high or if many tables contain few records.
Default is2.

* -mnesia send_compressed Level. Specifies the level of compression to be used when copying a ta-
ble from the local node to another one. Default is0.

Levelmust be an integer in the interval [0, 9], where0 means no compression and9 means maxi-
mum compression. Before setting it to a non-zero value, ensure that the remote nodes understand
this configuration.

* -mnesia schema_location Loc. Controls where Mnesia looks for its schema. ParameterLoc can be
one of the following atoms:

disc:
Mandatory disc. The schema is assumed to be located in the Mnesia directory. If the schema
cannot be found, Mnesia refuses to start. This is the old behavior.

ram:
Mandatory RAM. The schema resides in RAM only. At startup, a tiny new schema is generated.
This default schema only contains the definition of the schema table and only resides on the
local node. Since no other nodes are found in the default schema, configuration parameter
extra_db_nodesmust be used to let the node share its table definitions with other nodes.

Parameterextra_db_nodescan also be used on disc based nodes.

Ericsson AB mnesia 4.15 27

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

mnesia(3erl) ErlangModule Definition mnesia(3erl)

opt_disc:
Optional disc. The schema can reside on disc or in RAM. If the schema is found on disc, Mne-
sia starts as a disc-based node and the storage type of the schema table isdisc_copies. If no
schema is found on disc, Mnesia starts as a disc-less node and the storage type of the schema ta-
ble isram_copies. Default value for the application parameter isopt_disc.

First, the SASL application parameters are checked, then the command-line flags are checked, and
finally, the default value is chosen.

SEE ALSO
application(3erl), dets(3erl), disk_log(3erl), ets(3erl), mnesia_registry(3erl), qlc(3erl)

Ericsson AB mnesia 4.15 28

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia

