Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

mnesia_frag_hash(3erl) ErladMpdule Definition mnesia_frag_hash(3erl)
NAME

mnesia_frag_hash — Defines mnesia_frag_hash callback behavior
DESCRIPTION

This module defines a callback behavior for user-defined hash functions of fragmented tables.

Which module that is selected to implementrimesia_frag_hash behaior for a particular fragmented
table is specified together with the otlfiag_properties. The hash_module defines the module name.
Thehash_state defines the initial hash state.

This module implements dynamic hashing, which is a kind of hashing that grows nicely when ne
fragments are added. It is well suited for scalable hash tables.

EXPORTS
init_state(Tab, State) -> NewState | abort(Reason)
Types:
Tab = aom()

State = term()
NewState = term()
Reason =term()

Starts when a fragmented table is created with the funotiesia:create table/2 or when a
normal (unfragmented) table is s@rted to be a fragmented table wittnesia:change ta-
ble frag/2.

Notice that the functioadd frag/2 is started one time for each of the other fragmemise(@
number 1) as a part of the table creation procedure.

Sate is the initial value of thénhash state frag_property. NewSate is stored ashash state
among the othefrag_properties.

add_frag(State) -> {NewState, Iter Frags, AdditionalL ockFrags} | abort(Reason)
Types:

State = term()

NewState = term()

IterFrags = [integer()]
AdditionalLockFrags = [integer()]
Reason =term()

To <cale well, it is a good idea to ensure that the recordsvendyedistributed oer al frag-
ments, including the meone.

NewState is stored adash_state among the othefrag_properties.

As a part of theadd frag procedure, Mnesia iteratesep al fragments corresponding to the
IterFrags numbers and starteey to frag number(NewState,RecordKey) for each record. If
the nev fragment differs from the old fragment, the record iseddo the nev fragment.

As theadd frag procedure is a part of a schema transaction, Mnesia acquires write locks on
the affected tables. That is, both the fragments corresponditigrFoags and those corre-
sponding toAdditional LockFrags.

del_frag(State) -> {NewState, Iter Frags, AdditionalL ockFrags} | abort(Reason)
Types:

State = term()

NewState = term()

IterFrags = [integer()]
AdditionalLockFrags = [integer()]
Reason = term()

NewState is stored adash_state among the othefrag_properties.

Oz Ericsson AB mnesia 4.15 1


https://man.m.sourcentral.org/ubuntu1710/3+mnesia_frag_hash

=15

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

mnesia_frag_hash(3erl) ErladMpdule Definition mnesia_frag_hash(3erl)

As a part of thedel_frag procedure, Mnesia iteratesep all fragments corresponding to the
IterFrags numbers and starteey to frag number(NewState,RecordKey) for each record. If
the nev fragment differs from the old fragment, the record iseddo the nev fragment.

Notice that all records in the last fragment must beethdo another fragment, as the entire
fragment is deleted.

As thedd frag procedure is a part of a schema transaction, Mnesia acquires write locks on
the afected tables. That is, both the fragments correspondittprferags and those corre-
sponding toAdditional LockFrags.

key to frag number(State, Key) -> FragNum | abort(Reason)
Types:
FragNum = integer()()
Reason =term()

Starts whenger Mnesia needs to determine which fragment a certain record belongs to. It is
typically started atead, write, and delete.

match_spec to frag numbers(State, MatchSpec) -> FragNums | abort(Reason)
Types:

MatcSpec = ets_select_match_spec()

FragNums = [FragNum]

FragNum = integer()

Reason =term()
This function is called wherer Mnesia needs to determine which fragments that need to be
searched for 8MatchSpec. It is typically called byselect andmatch_object.

SEE ALSO
mnesia(3er|)

Ericsson AB mnesia 4.15 2


https://man.m.sourcentral.org/ubuntu1710/3+mnesia_frag_hash

