
mnesia_frag_hash(3erl) ErlangModule Definition mnesia_frag_hash(3erl)

NAME
mnesia_frag_hash − Defines mnesia_frag_hash callback behavior

DESCRIPTION
This module defines a callback behavior for user-defined hash functions of fragmented tables.

Which module that is selected to implement themnesia_frag_hash behavior for a particular fragmented
table is specified together with the otherfrag_properties. The hash_module defines the module name.
Thehash_state defines the initial hash state.

This module implements dynamic hashing, which is a kind of hashing that grows nicely when new
fragments are added. It is well suited for scalable hash tables.

EXPORTS
init_state(Tab, State) -> NewState | abort(Reason)

Types:

Tab = atom()
State = term()
NewState = term()
Reason = term()

Starts when a fragmented table is created with the functionmnesia:create_table/2 or when a
normal (unfragmented) table is converted to be a fragmented table withmnesia:change_ta-
ble_frag/2.

Notice that the functionadd_frag/2 is started one time for each of the other fragments (except
number 1) as a part of the table creation procedure.

State is the initial value of thehash_state frag_property. NewState is stored ashash_state
among the otherfrag_properties.

add_frag(State) -> {NewState, IterFrags, AdditionalLockFrags} | abort(Reason)

Types:

State = term()
NewState = term()
IterFrags = [integer()]
AdditionalLockFrags = [integer()]
Reason = term()

To scale well, it is a good idea to ensure that the records are evenly distributed over all frag-
ments, including the new one.

NewState is stored ashash_state among the otherfrag_properties.

As a part of theadd_frag procedure, Mnesia iterates over all fragments corresponding to the
IterFra gs numbers and startskey_to_frag_number(NewState,RecordKey) for each record. If
the new fragment differs from the old fragment, the record is moved to the new fragment.

As theadd_frag procedure is a part of a schema transaction, Mnesia acquires write locks on
the affected tables. That is, both the fragments corresponding toIterFra gs and those corre-
sponding toAdditionalLockFra gs.

del_frag(State) -> {NewState, IterFrags, AdditionalLockFrags} | abort(Reason)

Types:

State = term()
NewState = term()
IterFrags = [integer()]
AdditionalLockFrags = [integer()]
Reason = term()

NewState is stored ashash_state among the otherfrag_properties.

Ericsson AB mnesia 4.15 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia_frag_hash


mnesia_frag_hash(3erl) ErlangModule Definition mnesia_frag_hash(3erl)

As a part of thedel_frag procedure, Mnesia iterates over all fragments corresponding to the
IterFra gs numbers and startskey_to_frag_number(NewState,RecordKey) for each record. If
the new fragment differs from the old fragment, the record is moved to the new fragment.

Notice that all records in the last fragment must be moved to another fragment, as the entire
fragment is deleted.

As thedel_frag procedure is a part of a schema transaction, Mnesia acquires write locks on
the affected tables. That is, both the fragments corresponding toIterFra gs and those corre-
sponding toAdditionalLockFra gs.

key_to_frag_number(State, Key) -> FragNum | abort(Reason)

Types:

FragNum = integer()()
Reason = term()

Starts whenever Mnesia needs to determine which fragment a certain record belongs to. It is
typically started atread, write, and delete.

match_spec_to_frag_numbers(State, MatchSpec) -> FragNums | abort(Reason)

Types:

MatcSpec = ets_select_match_spec()
FragNums = [FragNum]
FragNum = integer()
Reason = term()

This function is called whenever Mnesia needs to determine which fragments that need to be
searched for aMatchSpec. It is typically called byselect andmatch_object.

SEE ALSO
mnesia(3erl)

Ericsson AB mnesia 4.15 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+mnesia_frag_hash

