Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)
NAME
ms_transform — A parse transformation that translates fun syntax into match
specifications.
DESCRIPTION

This module provides the parse transformation thatesmaklls teetsand dbg:fun2ms/translate into

literal match specifications. It also provides the back end for the same functions when called from the
Erlang shell.

The translation from funs to match specifications is accessed through dhpsaudo functions"
ets:fun2ms/Anddbg:fun2ms/1

As everyone trying to usets:select/2r dbgseems to end up reading this manual page, this description
is an introduction to the concept of match specifications.

Read the whole manual page if it is the first time you are using the transformations.

Match specifications are used more or less as filtersy fdsemble usual Erlang matching in a list
comprehension or in a fun used wits:foldl/3, and so on. Haever, the syntax of pure match specifi-

cations is wkward, as thg are made up purely by Erlang terms, and the language has no syntax to
malke the match specifications more readable.

As the eecution and structure of the match specifications aeethiit of a fun, it is more straightfor
ward to write it using the familiar fun syntax and tovbahat translated into a match specification auto-
matically. A real fun is clearly more powerful than the match specifications, dild bearing the
match specifications in mind, and whatyttoan do, it is still more carenient to write it all as a fun.
This module contains the code that translates the fun syntax into match specification terms.

EXAMPLE 1
Using ets:select/2and a match specification, one can filter out rows of a table and construct a list of
tuples containing rel@nt parts of the data in these rows. One can aisdoldl/3 instead, but the
ets:select/Zall is far more efficient. Without the translation providedrsy transformone must strug-
gle with writing match specifications terms to accommodate this.

Consider a simple table of employees:

-record(emp, {empno, %Employee number as a string,dfie k
surname, %Surnana the employee
givenname, %Gien name of employee
dept, %Departmentne of {des,sales,prod,adm}
empyear}). %Year the employee was employed

We aeate the table using:

ets:new(emp_tab, [#ypos,#emp.empno},named_table,ordered_set]).
We fill the table with randomly chosen data:

[{emp,"011103","Black","Alfred",sales,2000},
{emp,"041231","Doe","John",prod,2001},
{emp,"052341","Smith","John",del997},
{emp,"076324","Smith","Ella",sales,1995},
{emp,"122334","Weston","Anna",prod,2002},
{emp,"535216","Chalker","Samuel",adm,1998},
{emp,"789789","Harrysson","Joe",adm,1996},
{emp,"963721","Scott","Juliana",d2003},
{emp,"989891","Brown","Gabriel",prod,1999}]

Assuming that we want the employee numbersvefyene in the sales department, there averaé
ways.

ets:match/Zan be used:

1> ets:match(emp_tab, {'_’, '$1’,"_",’_’, sales, '_7}).
["011103"],['076324"]]

ets:match/2uses a simpler type of match specification, but it is still unreadable, and one has little con-
trol over the returned result. It isvabys a list of lists.

b [a]

I".;.E

[=] ~ Ericsson AB stdlib 3.4.1 1

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

I".;.E

=]

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

b [a]

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)

ets:foldl/3or ets:foldr/3can be used tovaid the nested lists:

ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Acc];
(_,Acc) -> Acc
end,

1P
emp_tab).

The result i§"011103","076324"] The fun is straightforward, so the only problem is that all the data
from the table must be transferred from the table to the calling process for filtering. Thdidenmef
compared to thets:match/2call where the filtering can be done "inside" the emulator and only the
result is transferred to the process.

Consider a "puredts:select/2Zall that does whatts:foldrdoes:
ets:select(emp_tab, [{#emp{empno ='$1’, dept = sales, _="_"}[I.['$1T}]).

Although the record syntax is used, it is still hard to read wed &arder to write. The first element of

the tuple#emp{empno = '$1’, dept = sales, _="’}ells what to match. Elements not matching this

are not returned, as in tleg¢s:match/2example. The second element, the empty list, is a list of guard
expressions, which we do not need. The third element is the list of expressions constructing the return
value (in ETS this is almostwabys a list containing one single term). In our c&de is bound to the
emplosee number in the head (first element of the tuple), and hence the employee number is returned.
The result i"011103","076324"] as in heets:foldr/3example, but the result is retvie much more
efficiently in terms of gecution speed and memory consumption.

Using ets:fun2ms/1lwe @an combine the ease of use of #is:foldr/3and the dfciency of the pure
ets:select/Zxample:

-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, dept = sales}) ->
E
end)).

This example requires no special knowledge of match specifications to understand. The head of the fun
matches what you ant to filter out and the body returns what you want returned. As long as the fun
can be kpt within the limits of the match specifications, there is no need to transfer all table data to the
process for filtering as in thets:foldr/3example. It is easier to read than tite:foldr/3example, as the

select call in itself discards anything that does not match, while the fun efstfa@dr/3call needs to

handle both the elements matching and the ones not matching.

In the ets:fun2ms/Example abwe, it is needed to includens_transform.hrin the source code, as this
is what triggers the parse transformation of ét&efun2ms/Icall to a valid match specification. This
also implies that the transformation is done at compile timeef# when called from the shell) and
therefore taks no resources in runtime. That is, although you use the morevnfuiti syntax, it gets
as efficient in runtime as writing match specifications by hand.

EXAMPLE 2

Assume that we want to get all the employee numbers of gegdchired before year 2000. Using
ets:match/2s not an alternate here, as relational operators cannot be expressed there. Griag ag
ets:foldr/3can do it (slowlybut correct):

ets:foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc
end,

f,
emp_tab).

The result i"052341","076324","535216","789789","989891"hs &pected. The equilent expres-
sion using a handwritten match specification would look thks:

ets:select(emp_tab, [{#emp{empno ="'$1’, empyear = '$2’, ="},
[{'<, '$2’, 2000}],
[$1}]).

Ericsson AB stdlib 3.4.1 2

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

[=]

ry

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)

This gives the same resulf{’<’, '$2’, 2000}] is in the guard part and therefore discardghing that
does not hee an empyear(bound to'$2’ in the head) less than 2000, as the guard ifiollde/3 exam-
ple.

We write it usingets:fun2ms/1
-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, empyear = Y}) when Y < 2000 ->
E
end)).

EXAMPLE 3

Assume that we want the whole object matching instead of only one element. One \adtésrati
assign a variable tovery part of the record and build it up onceasmin the body of the fun, but the
following is easier:

ets:select(emp_tab, ets:fun2ms(
fun(Obj = #emp{empno = E, empyear = Y})
when Y < 2000 ->
Obj
end)).

As in ordinary Erlang matching, you can bind a variable to the whole matched object using a "match
inside the match", that is,a. Unfortunately in funs translated to match specifications, it isvatio

only at the "top-led", that is, matching thevhole object arriving to be matched into a separatg-v

able. If you are used to writing match specifications by hand, we mention that variable A is simply
translated into '$_". Alternately, pseudo functiorobject/Oalso returns the whole matched object, see
section Warnings and Restrictions

EXAMPLE 4

This example concerns the body of the fun. Assume that all employee nundiersrigewith zero @)
must be changed to begin with ong) (nstead, and that we want to create the [{sOld
empno>,<Nev enpno>}]:

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = [$0 | Rest] }) ->
{[$0]|Rest],[$1|Rest]}
end)).

This query hits the feature of partially bouredgin table typeordered_setso hat not the whole table
needs to be searched, only the part containgyg kegnning with 0 is looked into.

EXAMPLE 5

The fun can ha mary clauses. Assume that we want to do the following:
* |If an employee started before 1997, return the t{ipleentory <employee number>}
* |If an employee started 1997 or Iatbut before 2001, returfiookie, <employee number>}

* For all other employees, retugmewbige <employee numberzlexcept for those name8imithas
they would be affronted by anything other than the gagu and that is also what is returned for
their numbers{guru, <employee number>}

This is accomplished as follows:

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, surname = "Smith" }) ->
{guru,E};
(#emp{empno = E, empyear = Y}) when Y < 1997 ->
{inventory, E};
(#emp{empno = E, empyear = Y}) when Y > 2001 ->
{newbie, E};
(#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
{rookie, E}
end)).

. %
[=] ~ Ericsson AB stdlib 3.4.1 3

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)

The result is as follows:

[{rookie,"011103"},
{rookie,"041231"},
{guru,"052341"},
{guru,"076324"},
{newbie,"122334"},
{rookie,"535216"},
{inventory,"789789"},
{newbie,"963721"},
{rookie,"989891"}]

USEFUL BIFS
What more can you do? A simple answer is: see the documentatioatalf specificationsin ERTS
Users Guide. Havever, the following is a brief oerview of the most useful "built-in functions" that
you can use when the fun is to be translated into a match specificagtsifap2ms/1lIt is not possi-
ble to call other functions than those aléal in match specifications. No "usual" Erlang code can be
executed by the fun that is translated éig:fun2ms/1The fun is limited exactly to the power of the
match specifications, which is unfortunateit bhe price one must pay for th&eeution speed of
ets:select/Zompared tets:foldl/foldr.

The head of the fun is a head matching (or mismatchingparameterone object of the table we
select from. The object isvadys a single variable (can b¢ or a wple, as ETS, Dets, and Mnesia
tables include that. The match specification returneekdifun2ms/tan be used witHets:select/and
mnesia:select/2and with ets:select/2The use of in the head is allowed (and encouraged) at the top-
level.

The guard section can containyaguard expression of Erlang. The following is a list of BIFs and
expressions:

* Type testsis_atomis_float is_integer, is_list, is_numberis_pid is_port is_referenceis_tuple
is_binary, is_functionis_record

* Boolean operatorsiot, and, or, andalsq orelse

* Relational operators: >, >=, <, =<, ==, ==, =/=, /=

* Arithmetics: +, -, *, div, rem

* Bitwise operatorsband bor, bxor, bnot, bsl, bsr

* The guard BlFsabs elementhd, length node round size tl, trunc, self

Contrary to thedct with "handwritten" match specifications, therecordguard works as in ordinary
Erlang code.

Semicolons ;) in guards are allwed, the result is (as expected) one "match specification clause" for
each semicolon-separated part of the guard. The semantics is identical to the Erlang semantics.

The body of the fun is used to construct the resultalger When selecting from tables, one usually
construct a suiting term here, using ordinary Erlang term constructienjufite parentheses, list
braclets, and variables matched out in the head, possibly with the occasional constanterWhate
expressions are allowed in guards are also allowed here, but no special funésbesceptobjectand
bindings(see further dan), which returns the whole matched object and all known variable bindings,
respectiely.

The dbgvariants of match specificationsyean imperatve gproach to the match specification body
the ETS dialect has not. The fun body &is:fun2ms/Ireturns the result without side effects. As
matching €) in the body of the match specifications is notwa#ld (for performance reasons) the only
thing left, more or less, is term construction.

EXAMPLE WITH DBG
This section describes the slightly different match specifications translatkxdyiiyn2ms/1

The same reasons for using the parse transformation apgibgtoaybe @en more, as filtering using

Erlang code is not a good idea when tracing (except afterwards, if you trace to file). The concept is sim-
ilar to that ofets:fun2ms/Except that you usually use it directly from the shell (which can also be done
with ets:fun2ms/iL

b [a]

I".;.E

[=] * Ericsson AB stdlib 3.4.1 4

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

[=]

ry

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)

The following is an example module to trace on:
-module(toy).

-export([start/1, store/2, retxie/1]).

start(Args) ->
toy_table = ets:new(toy_table, Args).

store(key, Value) ->
ets:insert(toy_table, {&y,Value}).

retrieve(Key) ->
[{K ey, Value}] = ets:lookup(toy_table, é4),
Value.

During model testing, the first test result§badmatch,16jn {toy,start,1} why?

We auspect theets:new/Zall, as we match hard on the return valug,veant only the particularew/2
call withtoy_tableas first parameter. So we start a default tracer on the node:

1> dbg:tracer().
{ok,<0.88.0>}

We trn on call tracing for all processes, we want to enalpetty restrictve race pattern, so there is
no need to call trace only axfgorocesses (usually it is not):

2> dbg:p(all,call).
{ok,[{matched,nonode @nohost,25}]}

We gecify the filter we want to viev calls that resemblets:new(toy_table<something>)

3> dbg:tp(ets,ne,dbg:fun2ms(fun(Jtoy_table,]) -> true end)).
{ok,[{matched,nonode@nohost,1},{eed,1}]}

As can be seen, the fun used wilihg:fun2ms/ltakes a single list as parameter instead of a single
tuple. The list matches a list of the parameters to the traced function. A singldescan also be used.

The body of the fun)@resses, in a more impekaiway, actions to be taken if the fun head (and the
guards) matchedrue is returned here, only because the body of a fun cannot be empty. The return
value is discarded.

The following trace output is reced during test:
(<0.86.0>) call ets:new(toy_table, [ordered_set])

Assume that we la rot found the problem yet, and want to see wdtatnew/2returns. V& wse a
slightly different trace pattern:

4> dbg:tp(ets,ne,dbg:fun2ms(fun(ftoy_table,]) -> return_trace() end)).
The following trace output is reced during test:

(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned from ets:new/2 -> 24

The call toreturn_traceresults in a trace message when the function returns. It applies only to the spe-
cific function call triggering the match specification (and matching the head/guards of the match speci-
fication). This is by far the most common call in the body ditg@match specification.

The test nw fails with{badmatch,24}because the atomy _tabledoes not match the number returned
for an unnamed table. So, the problem is found, the table is to be named, agdrtengs supplied by
the test program do not includamed_tableWe rewrite the start function:
start(Args) ->

toy_table = ets:new(toy_table, [named_table|Args]).

With the same tracing turned on, the following trace output isveetei

(<0.86.0>) call ets:new(toy_table,[named_table,ordered_set])
(<0.86.0>) returned from ets:new/2 -> toy_table

. %
[=] * Ericsson AB stdlib 3.4.1 5

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)

Assume that the module wgasses all testing and goes into the system. After a while, it is found that
tabletoy_tablegrows while the system is running and that there areyrel@ments with atoms ais.

We expected only intger keys and so does the rest of the system, but clearly not the entire syseem. W
turn on call tracing and try to see calls to the module with an atom asythe k

1> dbg:tracer().

{ok,<0.88.0>}

2> dbg:p(all,call).

{ok,[{matched,nonode@nohost,25}]}

3> dbg:tpl(ty,store,dbg:fun2ms(fun([A,_]) when is_atom(A) -> true end)).
{ok,[{matched,nonode@nohost,1},{eed,1}]}

We wsedbg:tpl/3to ensure to catch local calls (assume that the module has girtce the smallerev-
sion and we are unsure if this inserting of atoms is not done locally). When in dwalys ake local
call tracing.

Assume that nothing happens when tracing in this way. The functionascadled with these parame-

ters. W& conclude that someone else (some other module) is doing it and realize that we must trace on
ets:insert/2and want to see the calling function. The calling function can bevetrising the match
specification functiorcaller. To get it into the trace message, the match specification functmsge

must be used. The filter call looksdikis (looking for calls te@ts:insert/2:

4> dbg:tpl(ets,insert,dbg:fun2ms(fun(ftoy_table,{A,_}]) when is_atom(A) ->
message(caller())

end)).

{ok,[{matched,nonode@nohost,1},{eed,2}]}

The caller is nw displayed in the "additional message" part of the trace output, and the following is
displayed after a while:

(<0.86.0>) call ets:insert(toy_table,{garbage,can}) ({evil_mod,evil_fun,2})
You haverealized that functioevil_fun of theevil modmodule, with arity2, is causing all this trouble.

This example illustrates the most used calls in match specificatiodbdorhe other more esoteric,
calls are listed and explained Match specifications in Erlangin ERTS Users Guide, as thg are
beyond the scope of this description.

WARNINGS AND RESTRICTIONS
The following warnings and restrictions apply to the funs used inetstfun2ms/anddbg:fun2ms/1

Warning:
To wse the pseudo functions triggering the translation, ensure to include the heades filens-
form.hrlin the source code. Failure to do so possibly results in runtime errors rather than compile time,
as the expression can be valid as a plain Erlang program without translation.

Warning:
The fun must be literally constructed inside the parameter list to the pseudo functions. The fun cannot
be bound to a variable first and then passedet®fun2ms/lor dbg:fun2ms/1 For example,
ets:fun2ms(fun(A) -> A endjorks, but not- = fun(A) -> A end, ets:fun2ms(FJhe latter results in a
compile-time error if the header is included, otherwise a runtime error.

Many restrictions apply to the fun that is translated into a match specificatioput it simple: you
cannot use afthing in the fun that you cannot use in a match specification. This means that, among
others, the following restrictions apply to the fun itself:

* Functions written in Erlang cannot be called, neither can local functions, global functions, or real
funs.

* Everything that is written as a function call is translated into a match specification callilivia b
function, so that the calt_list(X) is translated td'is_list’, '$1} ('$1’ is only an example, the
numbering can vary). If one tries to call a function that is not a match specificatibm,bit
causes an error.

* Variables occurring in the head of the fun are replaced by match specification variables in the

] order of occurrence, so that fragmém({A,B,C})is replaced by{'$1’, '$2’, '$3’} , and so on.

I".;.E

[=] * Ericsson AB stdlib 3.4.1 6

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)

Every occurrence of such anable in the match specification is replaced by a match specification
variable in the same ay, so hat the funfun({A,B}) when is_atom(A) -> B end translated into
[{{'$1''$2'},[{is_atom, $1}],['$2']}]

* Variables that are not included in the head are imported from thisoement and made into
match specificationonstexpressions. Example from the shell:

1> X =25.

25

2> ets:fun2ms(fun({A,B}) when A > X -> B end).
{{$1,$2'},[{>",$1" {const,25}}],['$2'T}]

* Matching with= cannot be used in the body. It can only be used on theudprdhe head of the
fun. Example from the shell again:

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
{{$1,[$27'$3T}[{>"'$1 /' $2}.['$_T}

2> ets:fun2ms(fun({A,[B|C]=D}) when A > B -> D end).

Error: fun with head matching (=" in head) cannot be translated into
match_spec

{error,transform_error}

3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).
Error: fun with body matching ('="in body) is i@ as match_spec
{error,transform_error}

All variables are bound in the head of a match specification, so the translator cannatutio

ple bindings. The special case when matching is done on thevabprlgkes the variable bind to
'$_’ in the resulting match specification. It is to alla more natural access to the whole matched
object. Pseudo functiasbject()can be used instead, see below.

The following expressions are translated equally:

ets:fun2ms(fun({a,_} = A) -> A end).
ets:fun2ms(fun({a,_}) -> object() end).

* The special match specificatioariables$ ' and’$* can be accessed through the pseudo func-
tions object() (for '$_") and bindings()(for '$*). As an example, one can translate the Valhg
ets:match_object/2all to aets:select/Zall:

ets:match_object(Table, {'$1',test,'$2'}).
This is the same as:

ets:select(Table, ets:fun2ms(fun({Atest,B}) -> object() end)).
In this simple case, the former expression is probably preferable in terms of readability.

Theets:select/Zall conceptually looks li this in the resulting code:

ets:select(Table, [{{'$1test,$2'}[1.['S_T})-
Matching on the top-iel of the fun head can be a more natural way to acesssee aboe.

* Term constructions/literals are translated as much as is needed to get theafidntoatch speci-
fication. This vay tuples are made into match specification tuple constructions (a one element
tuple containing the tuple) and constarpressions are used when importing variables from the
ervironment. Records are also translated into plain tuple constructions, calls to element, and so on.
The guard tests_record/2is translated into match specification code using the three parameter
version that is built into match specification, so that record(At) is translated into
{is_record,'$1’,t,5}if the record size of record typés 5.

* Language constructions suchase if, and catchthat are not present in match specifications are
not allowed.

%
iy = A
[=] - Ericsson AB stdlib 3.4.1 7

[=]

ry

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

I".;.E

=]

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

ms_transform(3erl) Erlaniglodule Definition ms_transform(3erl)

* |If header filems_transform.hris not included, the fun is not translated, which can resultima
time error(depending on whether the fun is valid in a pure Erlang context).

Ensure that the header is included when ustegnddbg:fun2ms/in compiled code.

* |If pseudo function triggering the translationeits:fun2ms/lthe head of the fun must contain a
single variable or a single tuple. If the pseudo functiatbg.fun2ms/1the head of the fun must
contain a single variable or a single list.

The translation from funs to match specifications is done at compile time, so runtime performance is
not affected by using these pseudo functions.

For more information about match specifications, seeMagch specifications in Erlangin ERTS
Users Guide.

EXPORTS
format_error(Error) -> Chars

Types:

Error = {error module(), term()}
Chars =o_lib:chars()

Takes an eror code returned by one of the other functions in the module and creatasah te
description of the error.

parse_transform(Forms, Options) -> Forms2
Types:

Forms = Forms2 =drl_parse:abstract_form() | erl_parse:form_info()]
Options = term()
Option list, required but not used.

Implements the transformation at compile time. This function is called by the compiler to do
the source code transformation if and when heademfiletransform.hris included in the
source code.

For information about he to use this parse transformation, sgeanddbg:fun2ms/1

For a description of match specifications, see sectiatch Specification in Erlang in
ERTS Uses Guide.

transform_from_shell(Dialect, Clauses, BoundEnvironment) -> term()
Types:

Dialect = ets | dbg
Clauses =drl_parse:abstract_clause()
BoundEnvironment =rl_eval:binding_struct()

List of variable bindings in the shell environment.

Implements the transformation when fla@2ms/Ifunctions are called from the shell. In this
case, the abstract form is for one single fun (parsed by the Erlang shell). All imparited v
ables are to be in theekvalue list passed @&oundEnvironmeniThe result is a term, normal-
ized, that is, not in abstract format.

b [a]

Ericsson AB stdlib 3.4.1 8

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

