
ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

NAME
ms_transform − A parse transformation that translates fun syntax into match

specifications.

DESCRIPTION
This module provides the parse transformation that makes calls toetsanddbg:fun2ms/1translate into
literal match specifications. It also provides the back end for the same functions when called from the
Erlang shell.

The translation from funs to match specifications is accessed through the two "pseudo functions"
ets:fun2ms/1anddbg:fun2ms/1.

As everyone trying to useets:select/2or dbgseems to end up reading this manual page, this description
is an introduction to the concept of match specifications.

Read the whole manual page if it is the first time you are using the transformations.

Match specifications are used more or less as filters. They resemble usual Erlang matching in a list
comprehension or in a fun used withlists:foldl/3, and so on. However, the syntax of pure match specifi-
cations is awkward, as they are made up purely by Erlang terms, and the language has no syntax to
make the match specifications more readable.

As the execution and structure of the match specifications are like that of a fun, it is more straightfor-
ward to write it using the familiar fun syntax and to have that translated into a match specification auto-
matically. A real fun is clearly more powerful than the match specifications allow, but bearing the
match specifications in mind, and what they can do, it is still more convenient to write it all as a fun.
This module contains the code that translates the fun syntax into match specification terms.

EXAMPLE 1
Using ets:select/2and a match specification, one can filter out rows of a table and construct a list of
tuples containing relevant parts of the data in these rows. One can useets:foldl/3 instead, but the
ets:select/2call is far more efficient. Without the translation provided byms_transform, one must strug-
gle with writing match specifications terms to accommodate this.

Consider a simple table of employees:

-record(emp, {empno, %Employee number as a string, the key
surname, %Surnameof the employee
givenname, %Given name of employee
dept, %Department,one of {dev,sales,prod,adm}
empyear}). %Year the employee was employed

We create the table using:

ets:new(emp_tab, [{keypos,#emp.empno},named_table,ordered_set]).

We fill the table with randomly chosen data:

[{emp,"011103","Black","Alfred",sales,2000},
{emp,"041231","Doe","John",prod,2001},
{emp,"052341","Smith","John",dev,1997},
{emp,"076324","Smith","Ella",sales,1995},
{emp,"122334","Weston","Anna",prod,2002},
{emp,"535216","Chalker","Samuel",adm,1998},
{emp,"789789","Harrysson","Joe",adm,1996},
{emp,"963721","Scott","Juliana",dev,2003},
{emp,"989891","Brown","Gabriel",prod,1999}]

Assuming that we want the employee numbers of everyone in the sales department, there are several
ways.

ets:match/2can be used:

1> ets:match(emp_tab, {’_’, ’$1’, ’_’, ’_’, sales, ’_’}).
[["011103"],["076324"]]

ets:match/2uses a simpler type of match specification, but it is still unreadable, and one has little con-
trol over the returned result. It is always a list of lists.

Ericsson AB stdlib 3.4.1 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

ets:foldl/3or ets:foldr/3can be used to avoid the nested lists:

ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Acc];
(_,Acc) -> Acc

end,
[],
emp_tab).

The result is["011103","076324"]. The fun is straightforward, so the only problem is that all the data
from the table must be transferred from the table to the calling process for filtering. That is inefficient
compared to theets:match/2call where the filtering can be done "inside" the emulator and only the
result is transferred to the process.

Consider a "pure"ets:select/2call that does whatets:foldrdoes:

ets:select(emp_tab, [{#emp{empno = ’$1’, dept = sales, _=’_’},[],[’$1’]}]).

Although the record syntax is used, it is still hard to read and even harder to write. The first element of
the tuple,#emp{empno = ’$1’, dept = sales, _=’_’}, tells what to match. Elements not matching this
are not returned, as in theets:match/2example. The second element, the empty list, is a list of guard
expressions, which we do not need. The third element is the list of expressions constructing the return
value (in ETS this is almost always a list containing one single term). In our case’$1’ is bound to the
employee number in the head (first element of the tuple), and hence the employee number is returned.
The result is["011103","076324"], as in theets:foldr/3example, but the result is retrieved much more
efficiently in terms of execution speed and memory consumption.

Using ets:fun2ms/1, we can combine the ease of use of theets:foldr/3and the efficiency of the pure
ets:select/2example:

-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, dept = sales}) ->

E
end)).

This example requires no special knowledge of match specifications to understand. The head of the fun
matches what you want to filter out and the body returns what you want returned. As long as the fun
can be kept within the limits of the match specifications, there is no need to transfer all table data to the
process for filtering as in theets:foldr/3example. It is easier to read than theets:foldr/3example, as the
select call in itself discards anything that does not match, while the fun of theets:foldr/3call needs to
handle both the elements matching and the ones not matching.

In theets:fun2ms/1example above, it is needed to includems_transform.hrlin the source code, as this
is what triggers the parse transformation of theets:fun2ms/1call to a valid match specification. This
also implies that the transformation is done at compile time (except when called from the shell) and
therefore takes no resources in runtime. That is, although you use the more intuitive fun syntax, it gets
as efficient in runtime as writing match specifications by hand.

EXAMPLE 2
Assume that we want to get all the employee numbers of employees hired before year 2000. Using
ets:match/2is not an alternative here, as relational operators cannot be expressed there. Once again,
ets:foldr/3can do it (slowly, but correct):

ets:foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc

end,
[],
emp_tab).

The result is["052341","076324","535216","789789","989891"], as expected. The equivalent expres-
sion using a handwritten match specification would look like this:

ets:select(emp_tab, [{#emp{empno = ’$1’, empyear = ’$2’, _=’_’},
[{’<’, ’$2’, 2000}],
[’$1’]}]).

Ericsson AB stdlib 3.4.1 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

This gives the same result.[{’<’, ’$2’, 2000}] is in the guard part and therefore discards anything that
does not have an empyear(bound to’$2’ in the head) less than 2000, as the guard in thefoldr/3 exam-
ple.

We write it usingets:fun2ms/1:

-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, empyear = Y}) when Y < 2000 ->

E
end)).

EXAMPLE 3
Assume that we want the whole object matching instead of only one element. One alternative is to
assign a variable to every part of the record and build it up once again in the body of the fun, but the
following is easier:

ets:select(emp_tab, ets:fun2ms(
fun(Obj = #emp{empno = E, empyear = Y})

when Y < 2000 ->
Obj

end)).

As in ordinary Erlang matching, you can bind a variable to the whole matched object using a "match
inside the match", that is, a= . Unfortunately in funs translated to match specifications, it is allowed
only at the "top-level", that is, matching thewholeobject arriving to be matched into a separate vari-
able. If you are used to writing match specifications by hand, we mention that variable A is simply
translated into ’$_’. Alternatively, pseudo functionobject/0also returns the whole matched object, see
section Warnings and Restrictions.

EXAMPLE 4
This example concerns the body of the fun. Assume that all employee numbers beginning with zero (0)
must be changed to begin with one (1) instead, and that we want to create the list[{<Old
empno>,<New empno>}]:

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = [$0 | Rest] }) ->

{[$0|Rest],[$1|Rest]}
end)).

This query hits the feature of partially bound keys in table typeordered_set, so that not the whole table
needs to be searched, only the part containing keys beginning with0 is looked into.

EXAMPLE 5
The fun can have many clauses. Assume that we want to do the following:

* If an employee started before 1997, return the tuple{inventory, <employee number>}.

* If an employee started 1997 or later, but before 2001, return{rookie, <employee number>}.

* For all other employees, return{newbie, <employee number>}, except for those namedSmithas
they would be affronted by anything other than the tagguru and that is also what is returned for
their numbers:{guru, <employee number>}.

This is accomplished as follows:

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, surname = "Smith" }) ->

{guru,E};
(#emp{empno = E, empyear = Y}) when Y < 1997 ->

{inventory, E};
(#emp{empno = E, empyear = Y}) when Y > 2001 ->

{newbie, E};
(#emp{empno = E, empyear = Y}) -> % 1997 -- 2001

{rookie, E}
end)).

Ericsson AB stdlib 3.4.1 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

The result is as follows:

[{rookie,"011103"},
{rookie,"041231"},
{guru,"052341"},
{guru,"076324"},
{newbie,"122334"},
{rookie,"535216"},
{inventory,"789789"},
{newbie,"963721"},
{rookie,"989891"}]

USEFUL BIFS
What more can you do? A simple answer is: see the documentation ofmatch specificationsin ERTS
User’s Guide. However, the following is a brief overview of the most useful "built-in functions" that
you can use when the fun is to be translated into a match specification byets:fun2ms/1. It is not possi-
ble to call other functions than those allowed in match specifications. No "usual" Erlang code can be
executed by the fun that is translated byets:fun2ms/1. The fun is limited exactly to the power of the
match specifications, which is unfortunate, but the price one must pay for the execution speed of
ets:select/2compared toets:foldl/foldr.

The head of the fun is a head matching (or mismatching)one parameter, one object of the table we
select from. The object is always a single variable (can be_) or a tuple, as ETS, Dets, and Mnesia
tables include that. The match specification returned byets:fun2ms/1can be used withdets:select/2and
mnesia:select/2, and withets:select/2. The use of= in the head is allowed (and encouraged) at the top-
level.

The guard section can contain any guard expression of Erlang. The following is a list of BIFs and
expressions:

* Type tests:is_atom, is_float, is_integer, is_list, is_number, is_pid, is_port, is_reference, is_tuple,
is_binary, is_function, is_record

* Boolean operators:not, and, or, andalso, orelse

* Relational operators: >, >=, <, =<, =:=, ==, =/=, /=

* Arithmetics:+ , -, * , div, rem

* Bitwise operators:band, bor, bxor, bnot, bsl, bsr

* The guard BIFs:abs, element, hd, length, node, round, size, tl, trunc, self

Contrary to the fact with "handwritten" match specifications, theis_recordguard works as in ordinary
Erlang code.

Semicolons (;) in guards are allowed, the result is (as expected) one "match specification clause" for
each semicolon-separated part of the guard. The semantics is identical to the Erlang semantics.

The body of the fun is used to construct the resulting value. When selecting from tables, one usually
construct a suiting term here, using ordinary Erlang term construction, like tuple parentheses, list
brackets, and variables matched out in the head, possibly with the occasional constant. Whatever
expressions are allowed in guards are also allowed here, but no special functions exist exceptobjectand
bindings(see further down), which returns the whole matched object and all known variable bindings,
respectively.

Thedbgvariants of match specifications have an imperative approach to the match specification body,
the ETS dialect has not. The fun body forets:fun2ms/1returns the result without side effects. As
matching (=) in the body of the match specifications is not allowed (for performance reasons) the only
thing left, more or less, is term construction.

EXAMPLE WITH DBG
This section describes the slightly different match specifications translated bydbg:fun2ms/1.

The same reasons for using the parse transformation apply todbg, maybe even more, as filtering using
Erlang code is not a good idea when tracing (except afterwards, if you trace to file). The concept is sim-
ilar to that ofets:fun2ms/1except that you usually use it directly from the shell (which can also be done
with ets:fun2ms/1).

Ericsson AB stdlib 3.4.1 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

The following is an example module to trace on:

-module(toy).

-export([start/1, store/2, retrieve/1]).

start(Args) ->
toy_table = ets:new(toy_table, Args).

store(Key, Value) ->
ets:insert(toy_table, {Key,Value}).

retrieve(Key) ->
[{K ey, Value}] = ets:lookup(toy_table, Key),
Value.

During model testing, the first test results in{badmatch,16}in {toy,start,1}, why?

We suspect theets:new/2call, as we match hard on the return value, but want only the particularnew/2
call with toy_tableas first parameter. So we start a default tracer on the node:

1> dbg:tracer().
{ok,<0.88.0>}

We turn on call tracing for all processes, we want to make a pretty restrictive trace pattern, so there is
no need to call trace only a few processes (usually it is not):

2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}

We specify the filter, we want to view calls that resembleets:new(toy_table, <something>):

3> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}

As can be seen, the fun used withdbg:fun2ms/1takes a single list as parameter instead of a single
tuple. The list matches a list of the parameters to the traced function. A single variable can also be used.
The body of the fun expresses, in a more imperative way, actions to be taken if the fun head (and the
guards) matches.true is returned here, only because the body of a fun cannot be empty. The return
value is discarded.

The following trace output is received during test:

(<0.86.0>) call ets:new(toy_table, [ordered_set])

Assume that we have not found the problem yet, and want to see whatets:new/2returns. We use a
slightly different trace pattern:

4> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> return_trace() end)).

The following trace output is received during test:

(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned from ets:new/2 -> 24

The call toreturn_traceresults in a trace message when the function returns. It applies only to the spe-
cific function call triggering the match specification (and matching the head/guards of the match speci-
fication). This is by far the most common call in the body of adbgmatch specification.

The test now fails with {badmatch,24}because the atomtoy_tabledoes not match the number returned
for an unnamed table. So, the problem is found, the table is to be named, and the arguments supplied by
the test program do not includenamed_table. We rewrite the start function:

start(Args) ->
toy_table = ets:new(toy_table, [named_table|Args]).

With the same tracing turned on, the following trace output is received:

(<0.86.0>) call ets:new(toy_table,[named_table,ordered_set])
(<0.86.0>) returned from ets:new/2 -> toy_table

Ericsson AB stdlib 3.4.1 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

Assume that the module now passes all testing and goes into the system. After a while, it is found that
tabletoy_tablegrows while the system is running and that there are many elements with atoms as keys.
We expected only integer keys and so does the rest of the system, but clearly not the entire system. We
turn on call tracing and try to see calls to the module with an atom as the key:

1> dbg:tracer().
{ok,<0.88.0>}
2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tpl(toy,store,dbg:fun2ms(fun([A,_]) when is_atom(A) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}

We usedbg:tpl/3to ensure to catch local calls (assume that the module has grown since the smaller ver-
sion and we are unsure if this inserting of atoms is not done locally). When in doubt, always use local
call tracing.

Assume that nothing happens when tracing in this way. The function is never called with these parame-
ters. We conclude that someone else (some other module) is doing it and realize that we must trace on
ets:insert/2and want to see the calling function. The calling function can be retrieved using the match
specification functioncaller. To get it into the trace message, the match specification functionmessage
must be used. The filter call looks like this (looking for calls toets:insert/2):

4> dbg:tpl(ets,insert,dbg:fun2ms(fun([toy_table,{A,_}]) when is_atom(A) ->
message(caller())
end)).
{ok,[{matched,nonode@nohost,1},{saved,2}]}

The caller is now displayed in the "additional message" part of the trace output, and the following is
displayed after a while:

(<0.86.0>) call ets:insert(toy_table,{garbage,can}) ({evil_mod,evil_fun,2})

You hav erealized that functionevil_fun of theevil_modmodule, with arity2, is causing all this trouble.

This example illustrates the most used calls in match specifications fordbg. The other, more esoteric,
calls are listed and explained inMatch specifications in Erlang in ERTS User’s Guide, as they are
beyond the scope of this description.

WARNINGS AND RESTRICTIONS
The following warnings and restrictions apply to the funs used in withets:fun2ms/1anddbg:fun2ms/1.

Warning:
To use the pseudo functions triggering the translation, ensure to include the header filems_trans-
form.hrl in the source code. Failure to do so possibly results in runtime errors rather than compile time,
as the expression can be valid as a plain Erlang program without translation.

Warning:
The fun must be literally constructed inside the parameter list to the pseudo functions. The fun cannot
be bound to a variable first and then passed toets:fun2ms/1or dbg:fun2ms/1. For example,
ets:fun2ms(fun(A) -> A end)works, but notF = fun(A) -> A end, ets:fun2ms(F). The latter results in a
compile-time error if the header is included, otherwise a runtime error.

Many restrictions apply to the fun that is translated into a match specification. To put it simple: you
cannot use anything in the fun that you cannot use in a match specification. This means that, among
others, the following restrictions apply to the fun itself:

* Functions written in Erlang cannot be called, neither can local functions, global functions, or real
funs.

* Everything that is written as a function call is translated into a match specification call to a built-in
function, so that the callis_list(X) is translated to{’is_list’, ’$1’} (’$1’ is only an example, the
numbering can vary). If one tries to call a function that is not a match specification built-in, it
causes an error.

* Variables occurring in the head of the fun are replaced by match specification variables in the
order of occurrence, so that fragmentfun({A,B,C}) is replaced by{’$1’, ’$2’, ’$3’} , and so on.

Ericsson AB stdlib 3.4.1 6

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

Every occurrence of such a variable in the match specification is replaced by a match specification
variable in the same way, so that the funfun({A,B}) when is_atom(A) -> B endis translated into
[{{’$1’,’$2’},[{is_atom,’$1’}],[’$2’]}] .

* Variables that are not included in the head are imported from the environment and made into
match specificationconstexpressions. Example from the shell:

1> X = 25.
25
2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{’$1’,’$2’},[{’>’,’$1’,{const,25}}],[’$2’]}]

* Matching with= cannot be used in the body. It can only be used on the top-level in the head of the
fun. Example from the shell again:

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{’$1’,[’$2’|’$3’]},[{’>’,’$1’,’$2’}],[’$_’]}]
2> ets:fun2ms(fun({A,[B|C]=D}) when A > B -> D end).
Error: fun with head matching (’=’ in head) cannot be translated into
match_spec
{error,transform_error}
3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).
Error: fun with body matching (’=’ in body) is illegal as match_spec
{error,transform_error}

All variables are bound in the head of a match specification, so the translator cannot allow multi-
ple bindings. The special case when matching is done on the top-level makes the variable bind to
’$_’ in the resulting match specification. It is to allow a more natural access to the whole matched
object. Pseudo functionobject()can be used instead, see below.

The following expressions are translated equally:

ets:fun2ms(fun({a,_} = A) -> A end).
ets:fun2ms(fun({a,_}) -> object() end).

* The special match specification variables’$_’ and ’$*’ can be accessed through the pseudo func-
tions object()(for ’$_’) and bindings()(for ’$*’). As an example, one can translate the following
ets:match_object/2call to aets:select/2call:

ets:match_object(Table, {’$1’,test,’$2’}).

This is the same as:

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

In this simple case, the former expression is probably preferable in terms of readability.

Theets:select/2call conceptually looks like this in the resulting code:

ets:select(Table, [{{’$1’,test,’$2’},[],[’$_’]}]).

Matching on the top-level of the fun head can be a more natural way to access’$_’ , see above.

* Term constructions/literals are translated as much as is needed to get them into valid match speci-
fication. This way tuples are made into match specification tuple constructions (a one element
tuple containing the tuple) and constant expressions are used when importing variables from the
environment. Records are also translated into plain tuple constructions, calls to element, and so on.
The guard testis_record/2is translated into match specification code using the three parameter
version that is built into match specification, so thatis_record(A,t) is translated into
{is_record,’$1’,t,5} if the record size of record typet is 5.

* Language constructions such ascase, if, and catchthat are not present in match specifications are
not allowed.

Ericsson AB stdlib 3.4.1 7

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

ms_transform(3erl) ErlangModule Definition ms_transform(3erl)

* If header filems_transform.hrlis not included, the fun is not translated, which can result in arun-
time error(depending on whether the fun is valid in a pure Erlang context).

Ensure that the header is included when usingetsanddbg:fun2ms/1in compiled code.

* If pseudo function triggering the translation isets:fun2ms/1, the head of the fun must contain a
single variable or a single tuple. If the pseudo function isdbg:fun2ms/1, the head of the fun must
contain a single variable or a single list.

The translation from funs to match specifications is done at compile time, so runtime performance is
not affected by using these pseudo functions.

For more information about match specifications, see theMatch specifications in Erlang in ERTS
User’s Guide.

EXPORTS
format_error(Error) -> Chars

Types:

Error = {error, module(), term()}
Chars =io_lib:chars()

Takes an error code returned by one of the other functions in the module and creates a textual
description of the error.

parse_transform(Forms, Options) -> Forms2

Types:

Forms = Forms2 = [erl_parse:abstract_form() | erl_parse:form_info()]
Options = term()

Option list, required but not used.

Implements the transformation at compile time. This function is called by the compiler to do
the source code transformation if and when header filems_transform.hrlis included in the
source code.

For information about how to use this parse transformation, seeetsanddbg:fun2ms/1.

For a description of match specifications, see sectionMatch Specification in Erlang in
ERTS User’s Guide.

transform_from_shell(Dialect, Clauses, BoundEnvironment) -> term()

Types:

Dialect = ets | dbg
Clauses = [erl_parse:abstract_clause()]
BoundEnvironment =erl_eval:binding_struct()

List of variable bindings in the shell environment.

Implements the transformation when thefun2ms/1functions are called from the shell. In this
case, the abstract form is for one single fun (parsed by the Erlang shell). All imported vari-
ables are to be in the key-value list passed asBoundEnvironment. The result is a term, normal-
ized, that is, not in abstract format.

Ericsson AB stdlib 3.4.1 8

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+ms_transform

