
QUEUE (3bsd) LOCAL QUEUE (3bsd)

NAME
SLIST_EMPTY, SLIST_ENTRY, SLIST_FIRST, SLIST_FOREACH, SLIST_FOREACH_FROM,
SLIST_FOREACH_SAFE, SLIST_FOREACH_FROM_SAFE, SLIST_HEAD,
SLIST_HEAD_INITIALIZER, SLIST_INIT, SLIST_INSERT_AFTER, SLIST_INSERT_HEAD,
SLIST_NEXT, SLIST_REMOVE_AFTER, SLIST_REMOVE_HEAD, SLIST_REMOVE,
SLIST_SWAP, STAILQ_CONCAT, STAILQ_EMPTY, STAILQ_ENTRY, STAILQ_FIRST,
STAILQ_FOREACH, STAILQ_FOREACH_FROM, STAILQ_FOREACH_SAFE,
STAILQ_FOREACH_FROM_SAFE, STAILQ_HEAD, STAILQ_HEAD_INITIALIZER,
STAILQ_INIT, STAILQ_INSERT_AFTER, STAILQ_INSERT_HEAD, STAILQ_INSERT_TAIL,
STAILQ_LAST, STAILQ_NEXT, STAILQ_REMOVE_AFTER, STAILQ_REMOVE_HEAD,
STAILQ_REMOVE, STAILQ_SWAP, LIST_EMPTY, LIST_ENTRY, LIST_FIRST,
LIST_FOREACH, LIST_FOREACH_FROM, LIST_FOREACH_SAFE,
LIST_FOREACH_FROM_SAFE, LIST_HEAD, LIST_HEAD_INITIALIZER, LIST_INIT,
LIST_INSERT_AFTER, LIST_INSERT_BEFORE, LIST_INSERT_HEAD, LIST_NEXT,
LIST_PREV, LIST_REMOVE, LIST_SWAP, TAILQ_CONCAT, TAILQ_EMPTY, TAILQ_ENTRY,
TAILQ_FIRST, TAILQ_FOREACH, TAILQ_FOREACH_FROM, TAILQ_FOREACH_SAFE,
TAILQ_FOREACH_FROM_SAFE, TAILQ_FOREACH_REVERSE,
TAILQ_FOREACH_REVERSE_FROM, TAILQ_FOREACH_REVERSE_SAFE,
TAILQ_FOREACH_REVERSE_FROM_SAFE, TAILQ_HEAD, TAILQ_HEAD_INITIALIZER,
TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_BEFORE, TAILQ_INSERT_HEAD,
TAILQ_INSERT_TAIL, TAILQ_LAST, TAILQ_NEXT, TAILQ_PREV, TAILQ_REMOVE,
TAILQ_SWAP — implementations of singly-linked lists, singly-linked tail queues, lists and tail queues

SYNOPSIS
#include <sys/queue.h>
(Seelibbsd(7) for include usage.)

SLIST_EMPTY(SLIST_HEAD ∗ head);

SLIST_ENTRY(TYPE);

SLIST_FIRST(SLIST_HEAD ∗ head);

SLIST_FOREACH(TYPE ∗ var , SLIST_HEAD ∗ head , SLIST_ENTRY NAME);

SLIST_FOREACH_FROM(TYPE ∗ var , SLIST_HEAD ∗ head , SLIST_ENTRY NAME);

SLIST_FOREACH_SAFE(TYPE ∗ var , SLIST_HEAD ∗ head , SLIST_ENTRY NAME ,
TYPE ∗ temp_var);

SLIST_FOREACH_FROM_SAFE(TYPE ∗ var , SLIST_HEAD ∗ head , SLIST_ENTRY NAME ,
TYPE ∗ temp_var);

SLIST_HEAD(HEADNAME , TYPE);

SLIST_HEAD_INITIALIZER(SLIST_HEAD head);

SLIST_INIT(SLIST_HEAD ∗ head);

SLIST_INSERT_AFTER(TYPE ∗ listelm , TYPE ∗ elm , SLIST_ENTRY NAME);

SLIST_INSERT_HEAD(SLIST_HEAD ∗ head , TYPE ∗ elm , SLIST_ENTRY NAME);

SLIST_NEXT(TYPE ∗ elm , SLIST_ENTRY NAME);

SLIST_REMOVE_AFTER(TYPE ∗ elm , SLIST_ENTRY NAME);

SLIST_REMOVE_HEAD(SLIST_HEAD ∗ head , SLIST_ENTRY NAME);

SLIST_REMOVE(SLIST_HEAD ∗ head , TYPE ∗ elm , TYPE , SLIST_ENTRY NAME);

SLIST_SWAP(SLIST_HEAD ∗ head1 , SLIST_HEAD ∗ head2 , SLIST_ENTRY NAME);

BSD June17, 2013 1

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

STAILQ_CONCAT(STAILQ_HEAD ∗ head1 , STAILQ_HEAD ∗ head2);

STAILQ_EMPTY(STAILQ_HEAD ∗ head);

STAILQ_ENTRY(TYPE);

STAILQ_FIRST(STAILQ_HEAD ∗ head);

STAILQ_FOREACH(TYPE ∗ var , STAILQ_HEAD ∗ head , STAILQ_ENTRY NAME);

STAILQ_FOREACH_FROM(TYPE ∗ var , STAILQ_HEAD ∗ head , STAILQ_ENTRY NAME);

STAILQ_FOREACH_SAFE(TYPE ∗ var , STAILQ_HEAD ∗ head , STAILQ_ENTRY NAME ,
TYPE ∗ temp_var);

STAILQ_FOREACH_FROM_SAFE(TYPE ∗ var , STAILQ_HEAD ∗ head ,
STAILQ_ENTRY NAME , TYPE ∗ temp_var);

STAILQ_HEAD(HEADNAME , TYPE);

STAILQ_HEAD_INITIALIZER(STAILQ_HEAD head);

STAILQ_INIT(STAILQ_HEAD ∗ head);

STAILQ_INSERT_AFTER(STAILQ_HEAD ∗ head , TYPE ∗ listelm , TYPE ∗ elm ,
STAILQ_ENTRY NAME);

STAILQ_INSERT_HEAD(STAILQ_HEAD ∗ head , TYPE ∗ elm , STAILQ_ENTRY NAME);

STAILQ_INSERT_TAIL(STAILQ_HEAD ∗ head , TYPE ∗ elm , STAILQ_ENTRY NAME);

STAILQ_LAST(STAILQ_HEAD ∗ head , TYPE , STAILQ_ENTRY NAME);

STAILQ_NEXT(TYPE ∗ elm , STAILQ_ENTRY NAME);

STAILQ_REMOVE_AFTER(STAILQ_HEAD ∗ head , TYPE ∗ elm , STAILQ_ENTRY NAME);

STAILQ_REMOVE_HEAD(STAILQ_HEAD ∗ head , STAILQ_ENTRY NAME);

STAILQ_REMOVE(STAILQ_HEAD ∗ head , TYPE ∗ elm , TYPE , STAILQ_ENTRY NAME);

STAILQ_SWAP(STAILQ_HEAD ∗ head1 , STAILQ_HEAD ∗ head2 , STAILQ_ENTRY NAME);

LIST_EMPTY(LIST_HEAD ∗ head);

LIST_ENTRY(TYPE);

LIST_FIRST(LIST_HEAD ∗ head);

LIST_FOREACH(TYPE ∗ var , LIST_HEAD ∗ head , LIST_ENTRY NAME);

LIST_FOREACH_FROM(TYPE ∗ var , LIST_HEAD ∗ head , LIST_ENTRY NAME);

LIST_FOREACH_SAFE(TYPE ∗ var , LIST_HEAD ∗ head , LIST_ENTRY NAME ,
TYPE ∗ temp_var);

LIST_FOREACH_FROM_SAFE(TYPE ∗ var , LIST_HEAD ∗ head , LIST_ENTRY NAME ,
TYPE ∗ temp_var);

LIST_HEAD(HEADNAME , TYPE);

LIST_HEAD_INITIALIZER(LIST_HEAD head);

LIST_INIT(LIST_HEAD ∗ head);

LIST_INSERT_AFTER(TYPE ∗ listelm , TYPE ∗ elm , LIST_ENTRY NAME);

LIST_INSERT_BEFORE(TYPE ∗ listelm , TYPE ∗ elm , LIST_ENTRY NAME);

LIST_INSERT_HEAD(LIST_HEAD ∗ head , TYPE ∗ elm , LIST_ENTRY NAME);

BSD June17, 2013 2

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

LIST_NEXT(TYPE ∗ elm , LIST_ENTRY NAME);

LIST_PREV(TYPE ∗ elm , LIST_HEAD ∗ head , TYPE , LIST_ENTRY NAME);

LIST_REMOVE(TYPE ∗ elm , LIST_ENTRY NAME);

LIST_SWAP(LIST_HEAD ∗ head1 , LIST_HEAD ∗ head2 , TYPE , LIST_ENTRY NAME);

TAILQ_CONCAT(TAILQ_HEAD ∗ head1 , TAILQ_HEAD ∗ head2 , TAILQ_ENTRY NAME);

TAILQ_EMPTY(TAILQ_HEAD ∗ head);

TAILQ_ENTRY(TYPE);

TAILQ_FIRST(TAILQ_HEAD ∗ head);

TAILQ_FOREACH(TYPE ∗ var , TAILQ_HEAD ∗ head , TAILQ_ENTRY NAME);

TAILQ_FOREACH_FROM(TYPE ∗ var , TAILQ_HEAD ∗ head , TAILQ_ENTRY NAME);

TAILQ_FOREACH_SAFE(TYPE ∗ var , TAILQ_HEAD ∗ head , TAILQ_ENTRY NAME ,
TYPE ∗ temp_var);

TAILQ_FOREACH_FROM_SAFE(TYPE ∗ var , TAILQ_HEAD ∗ head , TAILQ_ENTRY NAME ,
TYPE ∗ temp_var);

TAILQ_FOREACH_REVERSE(TYPE ∗ var , TAILQ_HEAD ∗ head , HEADNAME ,
TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE_FROM(TYPE ∗ var , TAILQ_HEAD ∗ head , HEADNAME ,
TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE_SAFE(TYPE ∗ var , TAILQ_HEAD ∗ head , HEADNAME ,
TAILQ_ENTRY NAME , TYPE ∗ temp_var);

TAILQ_FOREACH_REVERSE_FROM_SAFE(TYPE ∗ var , TAILQ_HEAD ∗ head , HEADNAME ,
TAILQ_ENTRY NAME , TYPE ∗ temp_var);

TAILQ_HEAD(HEADNAME , TYPE);

TAILQ_HEAD_INITIALIZER(TAILQ_HEAD head);

TAILQ_INIT(TAILQ_HEAD ∗ head);

TAILQ_INSERT_AFTER(TAILQ_HEAD ∗ head , TYPE ∗ listelm , TYPE ∗ elm ,
TAILQ_ENTRY NAME);

TAILQ_INSERT_BEFORE(TYPE ∗ listelm , TYPE ∗ elm , TAILQ_ENTRY NAME);

TAILQ_INSERT_HEAD(TAILQ_HEAD ∗ head , TYPE ∗ elm , TAILQ_ENTRY NAME);

TAILQ_INSERT_TAIL(TAILQ_HEAD ∗ head , TYPE ∗ elm , TAILQ_ENTRY NAME);

TAILQ_LAST(TAILQ_HEAD ∗ head , HEADNAME);

TAILQ_NEXT(TYPE ∗ elm , TAILQ_ENTRY NAME);

TAILQ_PREV(TYPE ∗ elm , HEADNAME , TAILQ_ENTRY NAME);

TAILQ_REMOVE(TAILQ_HEAD ∗ head , TYPE ∗ elm , TAILQ_ENTRY NAME);

TAILQ_SWAP(TAILQ_HEAD ∗ head1 , TAILQ_HEAD ∗ head2 , TYPE , TAILQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on four types of data structures: singly-linked lists, singly-linked tail
queues, lists, and tail queues. All four structures support the following functionality:

1. Insertionof a new entry at the head of the list.

BSD June17, 2013 3

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

2. Insertionof a new entry after any element in the list.
3. O(1)removal of an entry from the head of the list.
4. Forward traversal through the list.
5. Swapping the contents of two lists.

Singly-linked lists are the simplest of the four data structures and support only the above functionality.
Singly-linked lists are ideal for applications with large datasets and few or no removals, or for imple-
menting a LIFO queue. Singly-linked lists add the following functionality:

1. O(n)removal of any entry in the list.

Singly-linked tail queues add the following functionality:
1. Entriescan be added at the end of a list.
2. O(n)removal of any entry in the list.
3. They may be concatenated.

However:
1. All list insertions must specify the head of the list.
2. Eachhead entry requires two pointers rather than one.
3. Codesize is about 15% greater and operations run about 20% slower than singly-linked

lists.

Singly-linked tail queues are ideal for applications with large datasets and few or no removals, or for
implementing a FIFO queue.

All doubly linked types of data structures (lists and tail queues) additionally allow:
1. Insertionof a new entry before any element in the list.
2. O(1)removal of any entry in the list.

However:
1. Eachelement requires two pointers rather than one.
2. Codesize and execution time of operations (except for removal) is about twice that of the

singly-linked data-structures.

Linked lists are the simplest of the doubly linked data structures.They add the following functionality
over the above:

1. They may be traversed backwards.
However:

1. To traverse backwards, an entry to begin the traversal and the list in which it is contained
must be specified.

Tail queues add the following functionality:
1. Entriescan be added at the end of a list.
2. They may be traversed backwards, from tail to head.
3. They may be concatenated.

However:
1. All list insertions and removals must specify the head of the list.
2. Eachhead entry requires two pointers rather than one.
3. Codesize is about 15% greater and operations run about 20% slower than singly-linked

lists.

In the macro definitions,TYPE is the name of a user defined structure, that must contain a field of type
SLIST_ENTRY, STAILQ_ENTRY, LIST_ENTRY, or TAILQ_ENTRY, namedNAME. The argument
HEADNAME is the name of a user defined structure that must be declared using the macros
SLIST_HEAD, STAILQ_HEAD, LIST_HEAD, or TAILQ_HEAD. See the examples below for further
explanation of how these macros are used.

SINGLY-LINKED LISTS
A singly-linked list is headed by a structure defined by theSLIST_HEAD macro. Thisstructure con-
tains a single pointer to the first element on the list. The elements are singly linked for minimum space
and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements.New elements
can be added to the list after an existing element or at the head of the list.An SLIST_HEAD structure is
declared as follows:

BSD June17, 2013 4

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

SLIST_HEAD(HEADNAME, TYPE) head;

whereHEADNAME is the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the list.A pointer to the head of the list can later be declared as:

struct HEADNAME ∗ headp;

(The nameshead andheadp are user selectable.)

The macroSLIST_HEAD_INITIALIZER evaluates to an initializer for the listhead.

The macroSLIST_EMPTY evaluates to true if there are no elements in the list.

The macroSLIST_ENTRY declares a structure that connects the elements in the list.

The macroSLIST_FIRST returns the first element in the list or NULL if the list is empty.

The macroSLIST_FOREACH traverses the list referenced byhead in the forward direction, assigning
each element in turn tovar.

The macroSLIST_FOREACH_FROM behaves identically toSLIST_FOREACH whenvar is NULL,
else it treatsvar as a previously found SLIST element and begins the loop atvar instead of the first
element in the SLIST referenced byhead.

The macroSLIST_FOREACH_SAFE traverses the list referenced byhead in the forward direction,
assigning each element in turn tovar. Howev er, unlike SLIST_FOREACH() here it is permitted to both
removevar as well as free it from within the loop safely without interfering with the traversal.

The macroSLIST_FOREACH_FROM_SAFE behaves identically toSLIST_FOREACH_SAFE when
var is NULL, else it treatsvar as a previously found SLIST element and begins the loop atvar
instead of the first element in the SLIST referenced byhead.

The macroSLIST_INIT initializes the list referenced byhead.

The macroSLIST_INSERT_HEAD inserts the new elementelm at the head of the list.

The macroSLIST_INSERT_AFTER inserts the new elementelm after the elementlistelm.

The macroSLIST_NEXT returns the next element in the list.

The macro SLIST_REMOVE_AFTER removes the element afterelm from the list. Unlike
SLIST_REMOVE, this macro does not traverse the entire list.

The macroSLIST_REMOVE_HEAD removes the elementelm from the head of the list.For optimum
efficiency, elements being removed from the head of the list should explicitly use this macro instead of
the genericSLIST_REMOVE macro.

The macroSLIST_REMOVE removes the elementelm from the list.

The macroSLIST_SWAP swaps the contents ofhead1 andhead2.

SINGLY-LINKED LIST EXAMPLE
SLIST_HEAD(slisthead, entry) head =

SLIST_HEAD_INITIALIZER(head);
struct slisthead ∗ headp; /∗ Singly-linked List head. ∗ /
struct entry {

...
SLIST_ENTRY(entry) entries; /∗ Singly-linked List. ∗ /
...

} ∗ n1, ∗ n2, ∗ n3, ∗ np;

SLIST_INIT(&head); /∗ Initialize the list. ∗ /

n1 = malloc(sizeof(struct entry)); /∗ Insert at the head. ∗ /
SLIST_INSERT_HEAD(&head, n1, entries);

BSD June17, 2013 5

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

n2 = malloc(sizeof(struct entry)); /∗ Insert after. ∗ /
SLIST_INSERT_AFTER(n1, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/∗ Deletion. ∗ /
free(n2);

n3 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries); /∗ Deletion from the head. ∗ /
free(n3);

/∗ Forward traversal. ∗ /
SLIST_FOREACH(np, &head, entries)

np-> ...
/∗ Safe forward traversal. ∗ /

SLIST_FOREACH_SAFE(np, &head, entries, np_temp) {
np->do_stuff();
...
SLIST_REMOVE(&head, np, entry, entries);
free(np);

}

while (!SLIST_EMPTY(&head)) { /∗ List Deletion. ∗ /
n1 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries);
free(n1);

}

SINGLY-LINKED TAIL QUEUES
A singly-linked tail queue is headed by a structure defined by theSTAILQ_HEAD macro. Thisstructure
contains a pair of pointers, one to the first element in the tail queue and the other to the last element in
the tail queue. The elements are singly linked for minimum space and pointer manipulation overhead at
the expense of O(n) removal for arbitrary elements.New elements can be added to the tail queue after
an existing element, at the head of the tail queue, or at the end of the tail queue.A STAILQ_HEAD
structure is declared as follows:

STAILQ_HEAD(HEADNAME, TYPE) head;

whereHEADNAME is the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the tail queue.A pointer to the head of the tail queue can later be declared as:

struct HEADNAME ∗ headp;

(The nameshead andheadp are user selectable.)

The macroSTAILQ_HEAD_INITIALIZER evaluates to an initializer for the tail queuehead.

The macroSTAILQ_CONCAT concatenates the tail queue headed byhead2 onto the end of the one
headed byhead1 removing all entries from the former.

The macroSTAILQ_EMPTY evaluates to true if there are no items on the tail queue.

The macroSTAILQ_ENTRY declares a structure that connects the elements in the tail queue.

The macroSTAILQ_FIRST returns the first item on the tail queue or NULL if the tail queue is empty.

The macroSTAILQ_FOREACH traverses the tail queue referenced byhead in the forward direction,
assigning each element in turn tovar.

The macroSTAILQ_FOREACH_FROM behaves identically toSTAILQ_FOREACH whenvar is NULL,
else it treatsvar as a previously found STAILQ element and begins the loop atvar instead of the first
element in the STAILQ referenced byhead.

BSD June17, 2013 6

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

The macroSTAILQ_FOREACH_SAFE traverses the tail queue referenced byhead in the forward
direction, assigning each element in turn tovar. Howev er, unlike STAILQ_FOREACH() here it is per-
mitted to both removevar as well as free it from within the loop safely without interfering with the tra-
versal.

The macroSTAILQ_FOREACH_FROM_SAFE behaves identically toSTAILQ_FOREACH_SAFE when
var is NULL, else it treatsvar as a previously found STAILQ element and begins the loop atvar
instead of the first element in the STAILQ referenced byhead.

The macroSTAILQ_INIT initializes the tail queue referenced byhead.

The macroSTAILQ_INSERT_HEAD inserts the new elementelm at the head of the tail queue.

The macroSTAILQ_INSERT_TAIL inserts the new elementelm at the end of the tail queue.

The macroSTAILQ_INSERT_AFTER inserts the new elementelm after the elementlistelm.

The macroSTAILQ_LAST returns the last item on the tail queue. If the tail queue is empty the return
value isNULL.

The macroSTAILQ_NEXT returns the next item on the tail queue, or NULL this item is the last.

The macroSTAILQ_REMOVE_AFTER removes the element afterelm from the tail queue.Unlike
STAILQ_REMOVE, this macro does not traverse the entire tail queue.

The macroSTAILQ_REMOVE_HEAD removes the element at the head of the tail queue.For optimum
efficiency, elements being removed from the head of the tail queue should use this macro explicitly
rather than the genericSTAILQ_REMOVE macro.

The macroSTAILQ_REMOVE removes the elementelm from the tail queue.

The macroSTAILQ_SWAP swaps the contents ofhead1 andhead2.

SINGLY-LINKED TAIL QUEUE EXAMPLE
STAILQ_HEAD(stailhead, entry) head =

STAILQ_HEAD_INITIALIZER(head);
struct stailhead ∗ headp; /∗ Singly-linked tail queue head. ∗ /
struct entry {

...
STAILQ_ENTRY(entry) entries; /∗ Tail queue. ∗ /
...

} ∗ n1, ∗ n2, ∗ n3, ∗ np;

STAILQ_INIT(&head); /∗ Initialize the queue. ∗ /

n1 = malloc(sizeof(struct entry)); /∗ Insert at the head. ∗ /
STAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /∗ Insert at the tail. ∗ /
STAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /∗ Insert after. ∗ /
STAILQ_INSERT_AFTER(&head, n1, n2, entries);

/∗ Deletion. ∗ /
STAILQ_REMOVE(&head, n2, entry, entries);
free(n2);

/∗ Deletion from the head. ∗ /
n3 = STAILQ_FIRST(&head);
STAILQ_REMOVE_HEAD(&head, entries);
free(n3);

/∗ Forward traversal. ∗ /
STAILQ_FOREACH(np, &head, entries)

BSD June17, 2013 7

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

np-> ...
/∗ Safe forward traversal. ∗ /

STAILQ_FOREACH_SAFE(np, &head, entries, np_temp) {
np->do_stuff();
...
STAILQ_REMOVE(&head, np, entry, entries);
free(np);

}
/∗ TailQ Deletion. ∗ /

while (!STAILQ_EMPTY(&head)) {
n1 = STAILQ_FIRST(&head);
STAILQ_REMOVE_HEAD(&head, entries);
free(n1);

}
/∗ Faster TailQ Deletion. ∗ /

n1 = STAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = STAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
STAILQ_INIT(&head);

LISTS
A l ist is headed by a structure defined by theLIST_HEAD macro. Thisstructure contains a single
pointer to the first element on the list.The elements are doubly linked so that an arbitrary element can be
removed without traversing the list. New elements can be added to the list after an existing element,
before an existing element, or at the head of the list. ALIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

whereHEADNAME is the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the list.A pointer to the head of the list can later be declared as:

struct HEADNAME ∗ headp;

(The nameshead andheadp are user selectable.)

The macroLIST_HEAD_INITIALIZER evaluates to an initializer for the listhead.

The macroLIST_EMPTY evaluates to true if there are no elements in the list.

The macroLIST_ENTRY declares a structure that connects the elements in the list.

The macroLIST_FIRST returns the first element in the list or NULL if the list is empty.

The macroLIST_FOREACH traverses the list referenced byhead in the forward direction, assigning
each element in turn tovar.

The macroLIST_FOREACH_FROM behaves identically toLIST_FOREACH whenvar is NULL, else
it treatsvar as a previously found LIST element and begins the loop atvar instead of the first element
in the LIST referenced byhead.

The macroLIST_FOREACH_SAFE traverses the list referenced byhead in the forward direction,
assigning each element in turn tovar. Howev er, unlike LIST_FOREACH() here it is permitted to both
removevar as well as free it from within the loop safely without interfering with the traversal.

The macroLIST_FOREACH_FROM_SAFE behaves identically toLIST_FOREACH_SAFE whenvar
is NULL, else it treatsvar as a previously found LIST element and begins the loop atvar instead of
the first element in the LIST referenced byhead.

BSD June17, 2013 8

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

The macroLIST_INIT initializes the list referenced byhead.

The macroLIST_INSERT_HEAD inserts the new elementelm at the head of the list.

The macroLIST_INSERT_AFTER inserts the new elementelm after the elementlistelm.

The macroLIST_INSERT_BEFORE inserts the new elementelm before the elementlistelm.

The macroLIST_NEXT returns the next element in the list, or NULL if this is the last.

The macroLIST_PREV returns the previous element in the list, or NULL if this is the first.List head
must contain elementelm.

The macroLIST_REMOVE removes the elementelm from the list.

The macroLIST_SWAP swaps the contents ofhead1 andhead2.

LIST EXAMPLE
LIST_HEAD(listhead, entry) head =

LIST_HEAD_INITIALIZER(head);
struct listhead ∗ headp; /∗ List head. ∗ /
struct entry {

...
LIST_ENTRY(entry) entries; /∗ List. ∗ /
...

} ∗ n1, ∗ n2, ∗ n3, ∗ np, ∗ np_temp;

LIST_INIT(&head); /∗ Initialize the list. ∗ /

n1 = malloc(sizeof(struct entry)); /∗ Insert at the head. ∗ /
LIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /∗ Insert after. ∗ /
LIST_INSERT_AFTER(n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /∗ Insert before. ∗ /
LIST_INSERT_BEFORE(n2, n3, entries);

LIST_REMOVE(n2, entries); /∗ Deletion. ∗ /
free(n2);

/∗ Forward traversal. ∗ /
LIST_FOREACH(np, &head, entries)

np-> ...

/∗ Safe forward traversal. ∗ /
LIST_FOREACH_SAFE(np, &head, entries, np_temp) {

np->do_stuff();
...
LIST_REMOVE(np, entries);
free(np);

}

while (!LIST_EMPTY(&head)) { /∗ List Deletion. ∗ /
n1 = LIST_FIRST(&head);
LIST_REMOVE(n1, entries);
free(n1);

}

n1 = LIST_FIRST(&head); /∗ Faster List Deletion. ∗ /
while (n1 != NULL) {

BSD June17, 2013 9

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

n2 = LIST_NEXT(n1, entries);
free(n1);
n1 = n2;

}
LIST_INIT(&head);

TAIL QUEUES
A tail queue is headed by a structure defined by theTAILQ_HEAD macro. Thisstructure contains a pair
of pointers, one to the first element in the tail queue and the other to the last element in the tail queue.
The elements are doubly linked so that an arbitrary element can be removed without traversing the tail
queue. New elements can be added to the tail queue after an existing element, before an existing ele-
ment, at the head of the tail queue, or at the end of the tail queue.A TAILQ_HEAD structure is declared
as follows:

TAILQ_HEAD(HEADNAME, TYPE) head;

whereHEADNAME is the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the tail queue.A pointer to the head of the tail queue can later be declared as:

struct HEADNAME ∗ headp;

(The nameshead andheadp are user selectable.)

The macroTAILQ_HEAD_INITIALIZER evaluates to an initializer for the tail queuehead.

The macroTAILQ_CONCAT concatenates the tail queue headed byhead2 onto the end of the one
headed byhead1 removing all entries from the former.

The macroTAILQ_EMPTY evaluates to true if there are no items on the tail queue.

The macroTAILQ_ENTRY declares a structure that connects the elements in the tail queue.

The macroTAILQ_FIRST returns the first item on the tail queue or NULL if the tail queue is empty.

The macroTAILQ_FOREACH traverses the tail queue referenced byhead in the forward direction,
assigning each element in turn tovar. var is set toNULL if the loop completes normally, or if there
were no elements.

The macroTAILQ_FOREACH_FROM behaves identically toTAILQ_FOREACH whenvar is NULL,
else it treatsvar as a previously found TAILQ element and begins the loop atvar instead of the first
element in the TAILQ referenced byhead.

The macroTAILQ_FOREACH_REVERSE traverses the tail queue referenced byhead in the reverse
direction, assigning each element in turn tovar.

The macroTAILQ_FOREACH_REVERSE_FROM behaves identically toTAILQ_FOREACH_REVERSE
whenvar is NULL, else it treatsvar as a previously found TAILQ element and begins the reverse loop
atvar instead of the last element in the TAILQ referenced byhead.

The macrosTAILQ_FOREACH_SAFE andTAILQ_FOREACH_REVERSE_SAFE traverse the list refer-
enced byhead in the forward or reverse direction respectively, assigning each element in turn tovar.
However, unlike their unsafe counterparts,TAILQ_FOREACH andTAILQ_FOREACH_REVERSE make
it possible to both removevar as well as free it from within the loop safely without interfering with the
traversal.

The macroTAILQ_FOREACH_FROM_SAFE behaves identically toTAILQ_FOREACH_SAFE when
var is NULL, else it treatsvar as a previously found TAILQ element and begins the loop atvar
instead of the first element in the TAILQ referenced byhead.

The macro TAILQ_FOREACH_REVERSE_FROM_SAFE behaves identically to
TAILQ_FOREACH_REVERSE_SAFE when var is NULL, else it treatsvar as a previously found
TAILQ element and begins the reverse loop atvar instead of the last element in the TAILQ referenced
by head.

BSD June17, 2013 10

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

The macroTAILQ_INIT initializes the tail queue referenced byhead.

The macroTAILQ_INSERT_HEAD inserts the new elementelm at the head of the tail queue.

The macroTAILQ_INSERT_TAIL inserts the new elementelm at the end of the tail queue.

The macroTAILQ_INSERT_AFTER inserts the new elementelm after the elementlistelm.

The macroTAILQ_INSERT_BEFORE inserts the new elementelm before the elementlistelm.

The macroTAILQ_LAST returns the last item on the tail queue. If the tail queue is empty the return
value isNULL.

The macroTAILQ_NEXT returns the next item on the tail queue, or NULL if this item is the last.

The macroTAILQ_PREV returns the previous item on the tail queue, or NULL if this item is the first.

The macroTAILQ_REMOVE removes the elementelm from the tail queue.

The macroTAILQ_SWAP swaps the contents ofhead1 andhead2.

TAIL QUEUE EXAMPLE
TAILQ_HEAD(tailhead, entry) head =

TAILQ_HEAD_INITIALIZER(head);
struct tailhead ∗ headp; /∗ Tail queue head. ∗ /
struct entry {

...
TAILQ_ENTRY(entry) entries; /∗ Tail queue. ∗ /
...

} ∗ n1, ∗ n2, ∗ n3, ∗ np;

TAILQ_INIT(&head); /∗ Initialize the queue. ∗ /

n1 = malloc(sizeof(struct entry)); /∗ Insert at the head. ∗ /
TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /∗ Insert at the tail. ∗ /
TAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /∗ Insert after. ∗ /
TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /∗ Insert before. ∗ /
TAILQ_INSERT_BEFORE(n2, n3, entries);

TAILQ_REMOVE(&head, n2, entries); /∗ Deletion. ∗ /
free(n2);

/∗ Forward traversal. ∗ /
TAILQ_FOREACH(np, &head, entries)

np-> ...
/∗ Safe forward traversal. ∗ /

TAILQ_FOREACH_SAFE(np, &head, entries, np_temp) {
np->do_stuff();
...
TAILQ_REMOVE(&head, np, entries);
free(np);

}
/∗ Reverse traversal. ∗ /

TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
np-> ...

/∗ TailQ Deletion. ∗ /

BSD June17, 2013 11

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM


QUEUE (3bsd) LOCAL QUEUE (3bsd)

while (!TAILQ_EMPTY(&head)) {
n1 = TAILQ_FIRST(&head);
TAILQ_REMOVE(&head, n1, entries);
free(n1);

}
/∗ Faster TailQ Deletion. ∗ /

n1 = TAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = TAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
TAILQ_INIT(&head);

SEE ALSO
tree(3bsd)

HISTORY
Thequeue functions first appeared in 4.4BSD.

BSD June17, 2013 12

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+SLIST_FOREACH_FROM

