Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

Smart:;:Comments(3pm) Us€ontributed Perl Documentation Smart;:Comments(3pm)
NAME
Smart;:Comments — Comments that do more than just sit there
VERSION
This document describes Smart::Comments version 1.000005
SYNOPSIS

use Smart::Comments;

my $var = suspect_value();
#H# $var

got: Svar

Now computing value...

and when looping:

for my $big_num (@big_nums) { ### Factoring... done
factor($big_num);

}

while ($error > $tolerance) { ### Refining——-> done
refine_approximation()

}

for (my $i=0; Si<SMAX_INT; $i++) { ### Working===[%] done
do_something_expensive_with($i);

}

DESCRIPTION

Smart comments provide an easy way to insertigigibg and tracking code into a program. yben
report the value of a variable, track the progress of a loop, and verify that particular assertions are true.

Best of all, when you're finished dedpging, you dort’haveto remae them. Simplycommenting out
theuse Smart::Comments line turns them back into gelar comments. Leaving smart comments
in your code is smart because if you needed them once, you'll almost certainly need them again later.

INTERFACE
All smart comments start with three (or mo#exharacters. That is, theare regular #-introduced
comments whose first w(or more) characters are algs.

Using the M odule
The module is loaded kkany ather:

use Smart::Comments;
When loaded it filters the remaining code up to the next:

no Smart::Comments;
directive, replacing ag smart comments with smart code that implements the comments behaviour.
If you're debugging an application you can alsmke it with the module from the command-line:

perl -MSmart::Comments $application.pl

Of course, this only enables smart comments in the application file itself, not moalules that the
application loads.

You can also specify particulardels of smartness, by including one or more markers as arguments to
theuse:

use Smart::Comments '#H##', "HHH#E

These arguments tell the module to filter only those comments that start with the same nutisber of
So the abee use statement would “actiste” any snart comments of the form:

EAEA perivs.20.2 2015-10-24 1

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

Smart:;:Comments(3pm) Us€ontributed Perl Documentation Smart;:Comments(3pm)

Smart...

H#H### Smarter...
but not those of the form:
H#i#HHE Smartest...

This facility is useful for dierentiating progress bars (see “Progress Bars”), which showiayalbe
active, from debugging comments (see “Debugging via Comments”), which should not:

###Ht Debugging here...

for (@values) { ### Progress: 0... 100
do_stuff();
}

Note that, for simplicityal smart comments described b&lavill be written with threg#’s; in al such
cases, annumber offt's greater than three could be used instead.

Debugging via Comments

The simplest &y to use smart comments is for debugging. The module supports the following forms,
all of which print toSTDERR

LABEL : EXPRESSION
TheLABEL is ary sequence of characters up to the first colbhe EXPRESSIONs ary valid Perl
expression, including a simpleaxiable. Wheractive, the comment prints the label, followed by
the value of the expression. For example:

Expected: 2 * $prediction

it Got: $result
prints:

Expected: 42

Ht Got: 13

#i## EXPRESSION
The EXPRESSIONIs ary valid Perl expression, including a simple variable. Whenvgcthe
comment prints the expression, followed by the value of the expression. For example:

2 * $prediction
#H# $result

prints:

##H 2 * $prediction: 42
##H $result: 13

#i# TEXT...
The TEXT is ary sequence of characters that end in three dots. Whereattte comment just
prints the text, including the dots. For example:

Acquiring data...

$data = get_data();

Verifying data...
verify_data($data);

Assimilating data...
assimilate_data($data);

Tired now, having a little lie down...

sleep 900;

EAEA perivs.20.2 2015-10-24 2

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

Smart:;:Comments(3pm) Us€ontributed Perl Documentation Smart;:Comments(3pm)

would print:

Acquiring data...
Verifying data...
Assimilating data...

Tired now, having a little lie down...

as each phase commenced. This is particularly useful for tracking down precisely where a bug is
occurring. It is also useful in non-debugging situations, especially when batch processing, as a
simple progress feedback mechanism.

Within a tetual smart comment you can use the special sequenow> (or <time> or
<when>) which is replaced with a timestamp. For example:

[<now>] Acquiring data...
would produce something like:
[Fri Nov 18 15:11:15 EST 2005] Acquiring data...
There are also “spacestampsthere> (or<loc> or<place> or<where>):
Acquiring data at <loc>...
to produce something like:
Acquiring data at "demo.pl", line 7...

You can also request just the filenamdileé>) or just the line number<(ine>) to get finer
control over formatting:

Acquiring data at <file>[<line>]...
and produce something like:
Acquiring data at demo.pl[7]...

You can, of course, use pgombination of stamps in the one comment.

Checksand Assertionsvia Comments

require: BOOLEAN_EXPR

assert: BOOLEAN_EXPR

ensure:. BOOLEAN_EXPR

insist: BOOLEAN_EXPR
These four are syngms for the same behaur. The comment luates the expression in a
boolean contd. If the result is true, nothing more is done. If the result is false, the comment
throws an &ception listing the expression, the fact that it failed, and the valuesofagiables
used in the expression.

For example, gven the following assertion:
##H require: $min < $result && $result < $max
if the expressionvaluated false, the comment would die with the following message:

#H $min < $result && $result < $max was not true at demo.pl line 86.
it $min was: 7

it $result was: 1000004

it $max was: 99

#i## check: BOOLEAN_EXPR

confirm: BOOLEAN_EXPR

#i# verify: BOOLEAN_EXPR
These three are synonyms for the same \netia The comment luates the expression in a
boolean context. If the result is true, nothing more is done. If the resailtés the comment prints
a warning message listing the expression, tit that it failed, and the values ofyavariables

EAEA perivs.20.2 2015-10-24 3

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

Smart:;:Comments(3pm) Us€ontributed Perl Documentation Smart;:Comments(3pm)

used in the expression.

The effect is identical to that of the four assertions listed easgkeept thatwarn is used instead

of die .
Progress Bars
You can put a smart comment on the same line po&the following types of Perl loop:

foreach my VAR (LIST) { ### Progressing... done

for my VAR (LIST) { ### Progressing... done

foreach (LIST) { ### Progressing... done

for (LIST) { ### Progressing... done

while (CONDITION) { ### Progressing... done

until (CONDITION) { #### Progressing... done

for (INIT; CONDITION; INCR) { ### Progressing... done

In each case, the module animates the comment, causing the dots to extend from the left text, reaching
the right text on the last iteration. For “open endédops (like while and C-stylefor loops), the
dots will never reach the right text and their progress slows down as the number of iterations increases.

For example, a smart comment like:
for (@candidates) { ### Evaluating... done

would be animated is the following sequence (whicluld appear sequentially on a single line, rather
than on consecuwt lines):

Evaluating done
Evaluating...... done
Evaluating............. done
Evaluating................... done
Evaluating...........ccccoevennnns done

The module animates the first sequence of three identical characters in the commnaiget] phose
characters are followed by a gap of at least whitespace characters. So you can specifferdift
types of progress bars. For example:

for (@candidates) { ### Evaluating::: done
or:

for (@candidates) { ### Evaluating=== done
or:

for (@candidates) { ### Evaluating||| done

If the characters to be animated are immediately followed by other non-whitespace characters before
the gap, then those other non-whitespace characters are usedaasarhéad’ or ‘‘leader’ and are
pushed right by the growing progress.t@r example:

for (@candidates) { ### Evaluating===| done
would animate lile 9:
Evaluating| done

Evaluating===== done

EAEA perivs.20.2 2015-10-24 4

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

Smart::Comments(3pm) Useontributed Perl Documentation Smart::Comments(3pm)
Evaluating============ done
Evaluating done
Evaluating done

If a percentage characte¥g(appears anywhere in the comment, it is replaced by the percentage
completion. For example:

for (@candidates) { ### Evaluating [===] % done
animates lik o:

Evaluating |] 0 % dne

Evaluating [===] 2 5% done

Evaluating [========|] 5 0% done

Evaluating [============|] 7 5% done

Evaluating [1 100% done
If the %is in the “arrav head’ it moves with the progress baFor example:

for (@candidates) { ### Evaluating |===[%] |

would be animated li 9:
Evaluating |[0%] |

Evaluating |=[25%] |

Evaluating |========[50%] |

Evaluating | [75%] |

Evaluating | |

For “open-ended’l oops, the percentage completion is unknpso the module replaces ed&éhvith
the current iteration count. For example:

while ($next ne $target) { ### Evaluating |===[%)] |
would animate lile :
Evaluating |[0] |

Evaluating |=[2] |
Evaluating |==[3] |

Evaluating [===[5] |

Evaluating |[====[7] |
Evaluating |[=====[8] |
Evaluating |======[11] |

Note that the non-sequential numbering in thevabsample is a result of the “hurry up andwslo
down’ algorithm that pregents open-ended loops froraee reaching the right-hand side.

As a special case, if the progress bar is drawn agdiws of identical brackets:
for (@candidates) { ### Evaluating: [][]

for (@candidates) { ### Evaluating: {}{}

EAEA perivs.20.2 2015-10-24 5

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

ol

Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

[=

Smart:;:Comments(3pm) Us€ontributed Perl Documentation Smart;:Comments(3pm)
for (@candidates) { ### Evaluating: ()()
for (@candidates) { ### Evaluating: <><>

Then the bar grows by repeating bracket pairs:
Evaluating: [

Evaluating: []
Evaluating: [][
Evaluating: [][]

Evaluating: [][1[
etc.

Finally, progress bars donhaveto have an animated component. Thecan just report the loog’
progress numerically:

for (@candidates) { ### Evaluating (% done)
which would animate (all of the same line):
Evaluating (0% done)

Evaluating (25% done)
Evaluating (50% done)
Evaluating (75% done)

Evaluating (100% done)

Time-Remaining Estimates

When a progress bar is used witfoa loop, the module tracks holong each iteration is taking and
makes an estimate of Wwanuch time will be required to complete the entire loop.

Normally this estimate is not shown, unless the estimate becorgeselaough to warrant informing
the userSpecifically, the estimate will be shown if, after éwseconds, the time remaining exceeds ten
seconds. lrother words, a time-remaining estimate isvehdf the module detectsfar loop that is
likely to take more than 15 seconds in total. For example:

for (@seven_samurai) { ### Fighting: [|||]

fight();
sleep 5;

}

would be animated li 9:
Fighting: []

Fighting: [[|l|]

Fighting: [[|11111I] (about 20 seconds remaining)
Fighting: 11N] (about 20 seconds remaining)
Fighting: [IHHTTNII] (about 10 seconds remaining)

Fighting: [[INHNHNTHNHINN] (less than 10 seconds remaining)

Fighting: [|[111ITTNIIT

EAEA perivs.20.2 2015-10-24 6

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

Smart:;:Comments(3pm) Us€ontributed Perl Documentation Smart;:Comments(3pm)

The precision of the reported time-remaining estimate is deliberatglyey mainly to prent it being
annoyingly wrong.

DIAGNOSTICS

In a sense,werything this module does is a diagnostic. All comments that print anything, print it to
STDERR

However, the module itself has only one diagnostic:

Incomprehensible arguments: %s in call to 'use Smart::Comments
You loaded the module and passed it an argument dettvthree—or— moret’'s. Arguments like
W HEEE | HHEE | dc. are the only ones that the module accepts.

CONFIGURATION AND ENVIRONMENT
Smart;:Comments can malkse of an evironment variable from your sheimart_ Comments . This
variable can be specified either with a true/false value (i.e. 1 or 0) or with the gameeats as may
be passed on thase line when loading the module (se€eNTERFACE”). The following table
summarizes the behaviour:

Value of
$ENV{Smart_Comments} Equivalent Perl
1 use Smart::Comments;
0 no Smart::Comments;
"W R use Smart::Comments qw(### ##HH);
"W SR use Smart::Comments qw(### #iHH);
To enable theSmart_ Comments environment variable, you need to load the module with-&blvV

flag:
use Smart::Comments —ENV;
Note that you can still specify other arguments inube statement:
use Smart::Comments —ENV, qw(### #H#HH);
In this case, the contents of the environment variable replaed&ti€in the argument list.

DEPENDENCIES
The module requires the following modules:

» Filter::Simple
e version

o List:Util
 Data::Dumper
* Tex::Balanced

INCOMPATIBILITIES
None reported. This module is probablere relatively safe with other Filter::Simple modules since it
is very specific and limited in what it filters.

BUGSAND LIMITATIONS
No bugs hee keen reported.

This module has the usual limitations of source filters (i.e. it looks smarter than it is).

Please report gnbugs or feature requests boig—smart—-comments AT rt DOT cpan DOT
org , or through the web interface at <http://rt.cpan.org>.

REPOSITORY
<https://github.com/neilb/Smart-Comments>

AUTHOR
Damian Conway<DCONWAY AT cpan DOT org>

LICENCE AND COPYRIGHT
Copyright (c) 2005, Damian ConwapCONWAY AT cpan DOT org> . All rights reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl

perl v5.20.2 2015-10-24 7

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Ubuntu 20.10 (Groovy Gorilla) man.m.sourcentral.org

Smart:;:Comments(3pm) Us€ontributed Perl Documentation Smart;:Comments(3pm)

itself.

DISCLAIMER OF WARRANTY

BECAUSE THIS SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NGRRANTY FOR THE
SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAV. EXCEPT WHEN OHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR THER FRARTIES PROVIDE THE

SOFTWARE “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A RRTICULAR PURPOSE. THE ENTIRE RISK AS 0 THE QUALITY AND

PERFORMANCE OF THE SOFTHRE IS WITH YOU. SHOULD THE SOFTWARE R®VE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARSERVICING, REPAIR, OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER ARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
SOFTWARE AS PERMITTED BY THE ABOVE LICENCE, BE LIABLE © YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL, OR CONSEQENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE SOFTWRE (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED IMCCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FRAILURE OF THE SOFTWARE D OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

EAEA perivs.20.2 2015-10-24 8

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

