
Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

NAME
Smart::Comments − Comments that do more than just sit there

VERSION
This document describes Smart::Comments version 1.000005

SYNOPSIS
use Smart::Comments;

my $var = suspect_value();

$var

got: $var

Now computing value...

and when looping:

for my $big_num (@big_nums) { ### Factoring... done
factor($big_num);

}

while ($error > $tolerance) { ### Refining−−−> done
refine_approximation()

}

for (my $i=0; $i<$MAX_INT; $i++) { ### Working===[%] done
do_something_expensive_with($i);

}

DESCRIPTION
Smart comments provide an easy way to insert debugging and tracking code into a program. They can
report the value of a variable, track the progress of a loop, and verify that particular assertions are true.

Best of all, when you’re finished debugging, you don’t hav eto remove them. Simplycommenting out
theuse Smart::Comments line turns them back into regular comments. Leaving smart comments
in your code is smart because if you needed them once, you’ll almost certainly need them again later.

INTERFACE
All smart comments start with three (or more)# characters. That is, they are regular #−introduced
comments whose first two (or more) characters are also#’s.

Using the Module
The module is loaded like any other:

use Smart::Comments;

When loaded it filters the remaining code up to the next:

no Smart::Comments;

directive, replacing any smart comments with smart code that implements the comments behaviour.

If you’re debugging an application you can also invoke it with the module from the command-line:

perl −MSmart::Comments $application.pl

Of course, this only enables smart comments in the application file itself, not in any modules that the
application loads.

You can also specify particular levels of smartness, by including one or more markers as arguments to
theuse :

use Smart::Comments '###', '####';

These arguments tell the module to filter only those comments that start with the same number of#’s.
So the aboveuse statement would ‘‘activate’’ any smart comments of the form:

perl v5.20.2 2015-10-24 1

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

Smart...

Smarter...

but not those of the form:

Smartest...

This facility is useful for differentiating progress bars (see ‘‘Progress Bars’’), which should always be
active, from debugging comments (see ‘‘Debugging via Comments’’), which should not:

Debugging here...

for (@values) { ### Progress: 0... 100
do_stuff();

}

Note that, for simplicity, all smart comments described below will be written with three#’s; in all such
cases, any number of#’s greater than three could be used instead.

Debugging via Comments
The simplest way to use smart comments is for debugging. The module supports the following forms,
all of which print toSTDERR:

LABEL : EXPRESSION
TheLABEL is any sequence of characters up to the first colon.TheEXPRESSIONis any valid Perl
expression, including a simple variable. Whenactive, the comment prints the label, followed by
the value of the expression. For example:

Expected: 2 * $prediction
Got: $result

prints:

Expected: 42
Got: 13

EXPRESSION
The EXPRESSIONis any valid Perl expression, including a simple variable. When active, the
comment prints the expression, followed by the value of the expression. For example:

2 * $prediction
$result

prints:

2 * $prediction: 42
$result: 13

TEXT...
The TEXT is any sequence of characters that end in three dots. When active, the comment just
prints the text, including the dots. For example:

Acquiring data...

$data = get_data();

Verifying data...

verify_data($data);

Assimilating data...

assimilate_data($data);

Tired now, having a little lie down...

sleep 900;

perl v5.20.2 2015-10-24 2

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

would print:

Acquiring data...

Verifying data...

Assimilating data...

Tired now, having a little lie down...

as each phase commenced. This is particularly useful for tracking down precisely where a bug is
occurring. It is also useful in non-debugging situations, especially when batch processing, as a
simple progress feedback mechanism.

Within a textual smart comment you can use the special sequence<now> (or <time> or
<when>) which is replaced with a timestamp. For example:

[<now>] Acquiring data...

would produce something like:

[Fri Nov 18 15:11:15 EST 2005] Acquiring data...

There are also ‘‘spacestamps’’:<here> (or <loc> or <place> or <where>):

Acquiring data at <loc>...

to produce something like:

Acquiring data at "demo.pl", line 7...

You can also request just the filename (<file>) or just the line number (<line>) to get finer
control over formatting:

Acquiring data at <file>[<line>]...

and produce something like:

Acquiring data at demo.pl[7]...

You can, of course, use any combination of stamps in the one comment.

Checks and Assertions via Comments
require: BOOLEAN_EXPR
assert: BOOLEAN_EXPR
ensure: BOOLEAN_EXPR
insist: BOOLEAN_EXPR

These four are synonyms for the same behaviour. The comment evaluates the expression in a
boolean context. If the result is true, nothing more is done. If the result is false, the comment
throws an exception listing the expression, the fact that it failed, and the values of any variables
used in the expression.

For example, given the following assertion:

require: $min < $result && $result < $max

if the expression evaluated false, the comment would die with the following message:

$min < $result && $result < $max was not true at demo.pl line 86.
$min was: 7
$result was: 1000004
$max was: 99

check: BOOLEAN_EXPR
confirm: BOOLEAN_EXPR
verify: BOOLEAN_EXPR

These three are synonyms for the same behaviour. The comment evaluates the expression in a
boolean context. If the result is true, nothing more is done. If the result is false, the comment prints
a warning message listing the expression, the fact that it failed, and the values of any variables

perl v5.20.2 2015-10-24 3

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

used in the expression.

The effect is identical to that of the four assertions listed earlier, except thatwarn is used instead
of die .

Progress Bars
You can put a smart comment on the same line as any of the following types of Perl loop:

foreach my VAR (LIST) { ### Progressing... done

for my VAR (LIST) { ### Progressing... done

foreach (LIST) { ### Progressing... done

for (LIST) { ### Progressing... done

while (CONDITION) { ### Progressing... done

until (CONDITION) { ### Progressing... done

for (INIT; CONDITION; INCR) { ### Progressing... done

In each case, the module animates the comment, causing the dots to extend from the left text, reaching
the right text on the last iteration. For ‘‘open ended’’ l oops (like while and C−stylefor loops), the
dots will never reach the right text and their progress slows down as the number of iterations increases.

For example, a smart comment like:

for (@candidates) { ### Evaluating... done

would be animated is the following sequence (which would appear sequentially on a single line, rather
than on consecutive lines):

Evaluating done

Evaluating...... done

Evaluating............. done

Evaluating................... done

Evaluating..........................done

The module animates the first sequence of three identical characters in the comment, provided those
characters are followed by a gap of at least two whitespace characters. So you can specify different
types of progress bars. For example:

for (@candidates) { ### Evaluating::: done

or:

for (@candidates) { ### Evaluating=== done

or:

for (@candidates) { ### Evaluating||| done

If the characters to be animated are immediately followed by other non-whitespace characters before
the gap, then those other non-whitespace characters are used as an ‘‘arrow head’’ or ‘ ‘leader’’ and are
pushed right by the growing progress bar. For example:

for (@candidates) { ### Evaluating===| done

would animate like so:

Evaluating| done

Evaluating=====| done

perl v5.20.2 2015-10-24 4

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

Evaluating============| done

Evaluating==================| done

Evaluating==========================done

If a percentage character (%) appears anywhere in the comment, it is replaced by the percentage
completion. For example:

for (@candidates) { ### Evaluating [===|] % done

animates like so:

Evaluating [|] 0 % done

Evaluating [===|] 2 5% done

Evaluating [========|] 5 0% done

Evaluating [============|] 7 5% done

Evaluating [=================] 100% done

If the %is in the ‘‘arrow head’’ it moves with the progress bar. For example:

for (@candidates) { ### Evaluating |===[%] |

would be animated like so:

Evaluating |[0%] |

Evaluating |=[25%] |

Evaluating |========[50%] |

Evaluating |===============[75%] |

Evaluating |===========================|

For ‘‘open-ended’’ l oops, the percentage completion is unknown, so the module replaces each%with
the current iteration count. For example:

while ($next ne $target) { ### Evaluating |===[%] |

would animate like so:

Evaluating |[0] |

Evaluating |=[2] |

Evaluating |==[3] |

Evaluating |===[5] |

Evaluating |====[7] |

Evaluating |=====[8] |

Evaluating |======[11] |

Note that the non-sequential numbering in the above example is a result of the ‘‘hurry up and slow
down’’ algorithm that prevents open-ended loops from ever reaching the right-hand side.

As a special case, if the progress bar is drawn as two pairs of identical brackets:

for (@candidates) { ### Evaluating: [][]

for (@candidates) { ### Evaluating: {}{}

perl v5.20.2 2015-10-24 5

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

for (@candidates) { ### Evaluating: ()()

for (@candidates) { ### Evaluating: <><>

Then the bar grows by repeating bracket pairs:

Evaluating: [

Evaluating: []

Evaluating: [][

Evaluating: [][]

Evaluating: [][][

etc.

Finally, progress bars don’t hav e to have an animated component. They can just report the loop’s
progress numerically:

for (@candidates) { ### Evaluating (% done)

which would animate (all of the same line):

Evaluating (0% done)

Evaluating (25% done)

Evaluating (50% done)

Evaluating (75% done)

Evaluating (100% done)

Time-Remaining Estimates
When a progress bar is used with afor loop, the module tracks how long each iteration is taking and
makes an estimate of how much time will be required to complete the entire loop.

Normally this estimate is not shown, unless the estimate becomes large enough to warrant informing
the user. Specifically, the estimate will be shown if, after five seconds, the time remaining exceeds ten
seconds. Inother words, a time-remaining estimate is shown if the module detects afor loop that is
likely to take more than 15 seconds in total. For example:

for (@seven_samurai) { ### Fighting: [|||]
fight();
sleep 5;

}

would be animated like so:

Fighting: []

Fighting: [||||]

Fighting: [|||||||||] (about 20 seconds remaining)

Fighting: [||||||||||||||] (about 20 seconds remaining)

Fighting: [||||||||||||||||||] (about 10 seconds remaining)

Fighting: [|||||||||||||||||||||||] (less than 10 seconds remaining)

Fighting: [|||||||||||||||||||||||||||]

perl v5.20.2 2015-10-24 6

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

The precision of the reported time-remaining estimate is deliberately vague, mainly to prevent it being
annoyingly wrong.

DIAGNOSTICS
In a sense, everything this module does is a diagnostic. All comments that print anything, print it to
STDERR.

However, the module itself has only one diagnostic:

Incomprehensible arguments: %s in call to 'use Smart::Comments
You loaded the module and passed it an argument that wasn’t three−or− more#’s. Arguments like
'###' , '####' , '#####' , etc. are the only ones that the module accepts.

CONFIGURATION AND ENVIRONMENT
Smart::Comments can make use of an environment variable from your shell:Smart_Comments . This
variable can be specified either with a true/false value (i.e. 1 or 0) or with the same arguments as may
be passed on theuse line when loading the module (see ‘‘ INTERFACE’’). The following table
summarizes the behaviour:

Value of
$ENV{Smart_Comments} Equivalent Perl

1 use Smart::Comments;
0 no Smart::Comments;

'###:####' use Smart::Comments qw(### ####);
'### ####' use Smart::Comments qw(### ####);

To enable theSmart_Comments environment variable, you need to load the module with the−ENV
flag:

use Smart::Comments −ENV;

Note that you can still specify other arguments in theuse statement:

use Smart::Comments −ENV, qw(### #####);

In this case, the contents of the environment variable replace the−ENVin the argument list.

DEPENDENCIES
The module requires the following modules:

• Filter::Simple

• version

• List::Util

• Data::Dumper

• Te xt::Balanced

INCOMPATIBILITIES
None reported. This module is probably even relatively safe with other Filter::Simple modules since it
is very specific and limited in what it filters.

BUGS AND LIMITATIONS
No bugs have been reported.

This module has the usual limitations of source filters (i.e. it looks smarter than it is).

Please report any bugs or feature requests tobug−smart−comments AT rt DOT cpan DOT
org , or through the web interface at <http://rt.cpan.org>.

REPOSITORY
<https://github.com/neilb/Smart−Comments>

AUTHOR
Damian Conway<DCONWAY AT cpan DOT org>

LICENCE AND COPYRIGHT
Copyright (c) 2005, Damian Conway<DCONWAY AT cpan DOT org> . All rights reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl

perl v5.20.2 2015-10-24 7

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

Smart::Comments(3pm) UserContributed Perl Documentation Smart::Comments(3pm)

itself.

DISCLAIMER OF WARRANTY
BECAUSE THIS SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
SOFTWARE ‘‘A S IS’’ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SOFTWARE IS WITH YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
SOFTWARE AS PERMITTED BY THE ABOVE LICENCE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DAT A BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

perl v5.20.2 2015-10-24 8

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+Smart::Comments

