
Slurm API(3) Slurm job initiation functions Slurm API(3)

NAME
slurm_allocate_pack_job_blocking, slurm_allocate_resources, slurm_allocate_resources_blocking,
slurm_allocation_msg_thr_create, slurm_allocation_msg_thr_destroy, slurm_allocation_lookup,
slurm_pack_job_lookup, slurm_confirm_allocation, slurm_free_submit_response_response_msg,
slurm_init_job_desc_msg, slurm_job_will_run, slurm_pack_job_will_run, slurm_job_will_run2,
slurm_read_hostfile, slurm_submit_batch_job, slurm_submit_batch_pack_job − Slurm job initiation
functions

SYNTAX
#include <slurm/slurm.h>

int slurm_allocate_resources(
job_desc_msg_t *job_desc_msg_ptr,
resource_allocation_response_msg_t **slurm_alloc_msg_pptr

);

resource_allocation_response_msg_t *slurm_allocate_resources_blocking(
job_desc_msg_t *job_desc_msg_ptr,
time_ttimeout, void (*pending_callback)(uint32_t job_id)

);

List *slurm_allocate_pack_job_blocking(
List job_desc_msg_list,
time_ttimeout, void (*pending_callback)(uint32_t job_id)

);

allocation_msg_thread_t *slurm_allocation_msg_thr_create(
uint16_t *port,
slurm_allocation_callbacks_t *callbacks

);

void *slurm_allocation_msg_thr_destroy(
allocation_msg_thread_t *slurm_alloc_msg_thr_ptr

);

int slurm_allocation_lookup {
uint32_tjobid,
resource_allocation_response_msg_t **slurm_alloc_msg_pptr

);

int slurm_pack_job_lookup {
uint32_tjobid,
List *slurm_alloc_msg_list

);

int slurm_confirm_allocation (
old_job_alloc_msg_t *old_job_desc_msg_ptr,
resource_allocation_response_msg_t **slurm_alloc_msg_pptr

);

void slurm_free_resource_allocation_response_msg(
resource_allocation_response_msg_t *slurm_alloc_msg_ptr

);

void slurm_free_submit_response_response_msg(
submit_response_msg_t *slurm_submit_msg_ptr

);

void slurm_init_job_desc_msg(
job_desc_msg_t *job_desc_msg_ptr

);

int slurm_job_will_run (
job_desc_msg_t *job_desc_msg_ptr

);

int slurm_pack_job_will_run (

March 2019 Slurm job initiation functions 1

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+slurm_allocate_resources_blocking


Slurm API(3) Slurm job initiation functions Slurm API(3)

List job_desc_msg_list
);

int slurm_job_will_run2 (
job_desc_msg_t *job_desc_msg_ptr,
will_run_response_msg_t **will_run_resp

);

int slurm_read_hostfile(
const char *filename, int n

);

int slurm_submit_batch_job (
job_desc_msg_t *job_desc_msg_ptr,
submit_response_msg_t **slurm_submit_msg_pptr

);

int slurm_submit_batch_pack_job(
List job_desc_msg_list,
submit_response_msg_t **slurm_submit_msg_pptr

);

ARGUMENTS
job_desc_msg_list

List of job request specifications (of type job_desc_msg_t) for a heterogeneous job in an
ordered list. See slurm.h for full details on the data structure’s contents.

job_desc_msg_ptr
Specifies the pointer to a job request specification. See slurm.h for full details on the data
structure’s contents.

callbacks
Specifies the pointer to a allocation callbacks structure.See slurm.h for full details on the data
structure’s contents.

old_job_desc_msg_ptr
Specifies the pointer to a description of an existing job. See slurm.h for full details on the data
structure’s contents.

slurm_alloc_msg_list
Specifies a pointer to a List structure to be created and filled with a list of pointers to resource
allocation data (of type resource_allocation_response_msg_t).

slurm_alloc_msg_pptr
Specifies the double pointer to the structure to be created and filled with a description of the
created resource allocation (job): job ID, list of allocated nodes, processor count per allocated
node, etc. See slurm.h for full details on the data structure’s contents.

slurm_alloc_msg_ptr
Specifies the pointer to the structure to be created and filled in by the functionslurm_allo-
cate_resources, slurm_allocate_resources_blocking, slurm_allocation_lookup, slurm_con-
firm_allocation, slurm_job_will_runor slurm_job_will_run.

slurm_alloc_msg_thr_ptr
Specifies the pointer to the structure created and returned by the functionslurm_alloca-
tion_msg_thr_create. Must be destroyed with functionslurm_allocation_msg_thr_destroy.

slurm_submit_msg_pptr
Specifies the double pointer to the structure to be created and filled with a description of the
created job: job ID, etc. See slurm.h for full details on the data structure’s contents.

slurm_submit_msg_ptr
Specifies the pointer to the structure to be created and filled in by the functionslurm_sub-
mit_batch_job.

will_run_resp
Specifies when and where the specified job descriptor could be started.

March 2019 Slurm job initiation functions 2

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+slurm_allocate_resources_blocking


Slurm API(3) Slurm job initiation functions Slurm API(3)

DESCRIPTION
slurm_allocate_resourcesRequest a resource allocation for a job. If successful, a job entry is created.
Note that if the job’s requested node count or time allocation are outside of the partition’s limits then a
job entry will be created, a warning indication will be placed in theerror_codefield of the response
message, and the job will be left queued until the partition’s limits are changed.Always release the
response message when no longer required using the functionslurm_free_resource_alloca-
tion_response_msg. This function only makes the request once. If the allocation is not available
immediately the node_cnt variable in the resp will be 0.If you want a function that will block until
either an error is received or an allocation is granted you can use theslurm_allocate_resources_block-
ing function described below.

slurm_allocate_resources_blockingRequest a resource allocation for a job. This call will block until
the allocation is granted, an error occurs, or the specified timeout limit is reached.The pending_call-
backparameter will be called if the allocation is not available immediately and the immediate flag is
not set in the request. This can be used to get the jobid of the job while waiting for the allocation to
become available. Onfailure NULL is returned and errno is set.

slurm_allocate_pack_job_blockingRequest a set of resource allocations for a heterogeneous job.
This call will block until the allocation is granted, an error occurs, or the specified timeout limit is
reached. Thepending_callbackparameter will be called if the allocation is not available immediately
and the immediate flag is not set in the request.This can be used to get the jobid of the job while wait-
ing for the allocation to become available. Onfailure NULL is returned and errno is set.The returned
list should be freed using thelist_destroy function.

slurm_allocation_msg_thr_createStartup a message handler talking with the controller dealing with
messages from the controller during an allocation. Callback functions are declared in thecallbacks
parameter and will be called when a corresponding message is received from the controller. This mes-
sage thread is needed to receive messages from the controller about node failure in an allocation and
other important messages. Although technically not required, it could be very helpful to inform about
problems with the allocation.

slurm_allocation_msg_thr_destroyShutdown the message handler
talking with the controller dealing with messages from the controller during
an allocation.

slurm_confirm_allocation Return detailed information on a specific existing job allocation.OBSO-
LETE FUNCTION: Use slurm_allocation_lookup instead.This function may only be successfully
executed by the job’s owner or user root.

slurm_allocation_lookupReturns detailed information about an existing job allocation.

slurm_pack_job_lookup Returns detailed information about an existing heterogeneous job allocation.
Each element in the list represents a component of the job in sequential order. The returned list should
be freed using thelist_destroy function.

slurm_free_resource_allocation_response_msgRelease the storage generated in response to a call of
the functionslurm_allocate_resourcesor slurm_allocation_lookup.

slurm_free_submit_response_msgRelease the storage generated in response to a call of the function
slurm_submit_batch_job.

slurm_init_job_desc_msgInitialize the contents of a job descriptor with default values. Execute this
function before issuing a request to submit or modify a job.

slurm_job_will_run Report when and where the supplied job description can be executed.

slurm_pack_job_will_run Report when and where the supplied heterogeneous job description can be
executed.

slurm_job_will_run2 Determine when and where the supplied job description can be executed.

slurm_read_hostfileRead a Slurm hostfile specified by "filename". "filename" must contain a list of
Slurm NodeNames, one per line.Reads up to "n" number of hostnames from the file. Returns a string
representing a hostlist ranged string of the contents of the file.This is a helper function, it does not
contact any Slurm daemons.

slurm_submit_batch_job Submit a job for later execution. Note that if the job’s requested node count
or time allocation are outside of the partition’s limits then a job entry will be created, a warning

March 2019 Slurm job initiation functions 3

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+slurm_allocate_resources_blocking


Slurm API(3) Slurm job initiation functions Slurm API(3)

indication will be placed in theerror_codefield of the response message, and the job will be left
queued until the partition’s limits are changed and resources are available. Always release the response
message when no longer required using the functionslurm_free_submit_response_msg.

slurm_submit_batch_pack_jobSubmit a heterogeneous job for later execution. Note that if the job’s
requested node count or time allocation are outside of the partition’s limits then a job entry will be cre-
ated, a warning indication will be placed in theerror_codefield of the response message, and the job
will be left queued until the partition’s limits are changed and resources are available. Always release
the response message when no longer required using the functionslurm_free_submit_response_msg.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, and Slurm error code is set appropriately.

ERRORS
SLURM_PROT OCOL_VERSION_ERROR Protocol version has changed, re−link your code.

ESLURM_CAN_NOT_START_IMMEDIATELY the job can not be started immediately as
requested.

ESLURM_DEFAULT _PARTITION_NOT_SET the system lacks a valid default partition.

ESLURM_JOB_MISSING_PARTITION_KEY use of this partition is restricted through a credential
provided only to user root. This job lacks such a valid credential.

ESLURM_JOB_MISSING_REQUIRED_PARTITION_GROUP use of this partition is restricted to
certain groups. This user is not a member of an authorized group.

ESLURM_REQUESTED_NODES_NOT_IN_PARTITION the job requested use of specific nodes
which are not in the requested (or default) partition.

ESLURM_TOO_MANY_REQUESTED_CPUS the job requested use of more processors than can
be made available to in the requested (or default) partition.

ESLURM_TOO_MANY_REQUESTED_NODES the job requested use of more nodes than can be
made available to in the requested (or default) partition.

ESLURM_ERROR_ON_DESC_TO_RECORD_COPY unable to create the job due to internal
resources being exhausted. Try again later.

ESLURM_JOB_MISSING_SIZE_SPECIFICATION the job failed to specify some size specifica-
tion. At least one of the following must be supplied: required processor count, required node count, or
required node list.

ESLURM_JOB_SCRIPT_MISSING failed to identify executable program to be queued.

ESLURM_USER_ID_MISSING identification of the job’s owner was not provided.

ESLURM_DUPLICATE_JOB_ID the requested job id is already in use.

ESLURM_NOT_TOP_PRIORITY job can not be started immediately because higher priority jobs
are waiting to use this partition.

ESLURM_NOT_PACK_JOB_LEADER the job ID does not represent a heterogeneous job leader as
required by the function.

ESLURM_REQUESTED_NODE_CONFIG_UNAV A ILABLE the requested node configuration is
not available (at least not in sufficient quantity) to satisfy the request.

ESLURM_REQUESTED_PART_CONFIG_UNAV A ILABLE the requested partition configuration
is not available to satisfy the request. This is not a fatal error, but indicates that the job will be left
queued until the partition’s configuration is changed. This typically indicates that the job’s requested
node count is outside of the node count range its partition is configured to support (e.g. the job wants
64 nodes and the partition will only schedule jobs using between 1 and 32 nodes). Alternately, the job’s
time limit exceeds the partition’s time limit.

ESLURM_NODES_BUSYthe requested nodes are already in use.

ESLURM_INVALID_FEATURE the requested feature(s) does not exist.

ESLURM_INVALID_JOB_ID the requested job id does not exist.

ESLURM_INVALID_NODE_COUNT the requested node count is not valid.

March 2019 Slurm job initiation functions 4

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+slurm_allocate_resources_blocking


Slurm API(3) Slurm job initiation functions Slurm API(3)

ESLURM_INVALID_NODE_NAME the requested node name(s) is/are not valid.

ESLURM_INVALID_PARTITION_NAME the requested partition name is not valid.

ESLURM_TRANSITION_STATE_NO_UPDATE the requested job configuration change can not
take place at this time. Try again later.

ESLURM_ALREADY_DONE the specified job has already completed and can not be modified.

ESLURM_ACCESS_DENIED the requesting user lacks authorization for the requested action (e.g.
trying to delete or modify another user’s job).

ESLURM_INTERCONNECT_FAILURE failed to configure the node interconnect.

ESLURM_BAD_DIST task distribution specification is invalid.

SLURM_PROT OCOL_SOCKET_IMPL_TIMEOUT Timeout in communicating with Slurm con-
troller.

NON-BLOCKING EXAMPLE
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <slurm/slurm.h>
#include <slurm/slurm_errno.h>

int main (int argc, char *argv[])
{

job_desc_msg_t job_desc_msg;
resource_allocation_response_msg_t* slurm_alloc_msg_ptr ;

slurm_init_job_desc_msg( &job_desc_msg );
job_desc_msg. name = ("job01 ");
job_desc_msg. job_min_memory = 1024;
job_desc_msg. time_limit = 200;
job_desc_msg. min_nodes = 400;
job_desc_msg. user_id = getuid();
job_desc_msg. group_id = getgid();
if (slurm_allocate_resources(&job_desc_msg,

&slurm_alloc_msg_ptr)) {
slurm_perror ("slurm_allocate_resources error");
exit (1);

}
printf ("Allocated nodes %s to job_id %u\n",

slurm_alloc_msg_ptr−>node_list,
slurm_alloc_msg_ptr−>job_id );

if (slurm_kill_job(slurm_alloc_msg_ptr−>job_id, SIGKILL, 0)) {
printf ("kill errno %d\n", slurm_get_errno());
exit (1);

}
printf ("canceled job_id %u\n",

slurm_alloc_msg_ptr−>job_id );
slurm_free_resource_allocation_response_msg(

slurm_alloc_msg_ptr);
exit (0);

}

BLOCKING EXAMPLE
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <slurm/slurm.h>
#include <slurm/slurm_errno.h>

int main (int argc, char *argv[])

March 2019 Slurm job initiation functions 5

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+slurm_allocate_resources_blocking


Slurm API(3) Slurm job initiation functions Slurm API(3)

{
job_desc_msg_t job_desc_msg;
resource_allocation_response_msg_t* slurm_alloc_msg_ptr ;

slurm_init_job_desc_msg( &job_desc_msg );
job_desc_msg. name = ("job01 ");
job_desc_msg. job_min_memory = 1024;
job_desc_msg. time_limit = 200;
job_desc_msg. min_nodes = 400;
job_desc_msg. user_id = getuid();
job_desc_msg. group_id = getgid();
if (!(slurm_alloc_msg_ptr =

slurm_allocate_resources_blocking(&job_desc_msg, 0, NULL))) {
slurm_perror ("slurm_allocate_resources_blocking error");
exit (1);

}
printf ("Allocated nodes %s to job_id %u\n",

slurm_alloc_msg_ptr−>node_list,
slurm_alloc_msg_ptr−>job_id );

if (slurm_kill_job(slurm_alloc_msg_ptr−>job_id, SIGKILL, 0)) {
printf ("kill errno %d\n", slurm_get_errno());
exit (1);

}
printf ("canceled job_id %u\n",

slurm_alloc_msg_ptr−>job_id );
slurm_free_resource_allocation_response_msg(

slurm_alloc_msg_ptr);
exit (0);

}

NOTE
These functions are included in the libslurm library, which must be linked to your process for use (e.g.
"cc −lslurm myprog.c").

COPYING
Copyright (C) 2010−2017 SchedMD LLC.Copyright (C) 2002−2006 The Regents of the University of
California. Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
CODE−OCEC−09−009. All rights reserved.

This file is part of Slurm, a resource management program.For details, see
<https://slurm.schedmd.com/>.

Slurm is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Slurm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See
the GNU General Public License for more details.

SEE ALSO
hostlist_create(3), hostlist_shift(3), hostlist_destroy(3), scancel(1), srun(1),
slurm_free_job_info_msg(3), slurm_get_errno(3), slurm_load_jobs(3), slurm_perror (3),
slurm_strerror (3)

March 2019 Slurm job initiation functions 6

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+slurm_allocate_resources_blocking

