
snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

NAME
snitfaq − Snit Frequently Asked Questions

DESCRIPTION
OVERVIEW

WHAT IS THIS DOCUMENT?
This is an atypical FAQ list, in that few of the questions are frequently asked. Rather, these are the
questions I think a newcomer to Snit should be asking.This file is not a complete reference to Snit,
however; that information is in thesnit man page.

WHAT IS SNIT?
Snit is a framework for defining abstract data types and megawidgets in pure Tcl. The name "Snit"
stands for "Snit’s Not Incr Tcl", signifying that Snit takes a different approach to defining objects than
does Incr Tcl, the best known object framework for Tcl. Had I realized that Snit would become at all
popular, I’d probably have chosen something else.

The primary purpose of Snit is to beobject glue--to help you compose diverse objects from diverse
sources into types and megawidgets with clean, convenient interfaces so that you can more easily build
your application.

Snit isn’t about theoretical purity or minimalist design; it’s about being able to do powerful things eas-
ily and consistently without having to think about them--so that you can concentrate on building your
application.

Snit isn’t about implementing thousands of nearly identical carefully-specified lightweight thingama-
jigs--not as individual Snit objects.Traditional Tcl methods will be much faster, and not much more
complicated. ButSnit is about implementing a clean interface to manage a collection of thousands of
nearly identical carefully-specified lightweight thingamajigs (e.g., think of the text widget and text tags,
or the canvas widget and canvas objects). Snitlets you hide the details of just how those thingamajigs
are stored--so that you can ignore it, and concentrate on building your application.

Snit isn’t a way of life, a silver bullet, or the Fountain of Youth. It’s just a way of managing complex-
ity--and of managing some of the complexity of managing complexity--so that you can concentrate on
building your application.

WHAT VERSION OF TCL DOES SNIT REQUIRE?
Snit 1.3 requires Tcl 8.3 or later; Snit 2.2 requires Tcl 8.5 or later.SeeSNIT VERSIONS for the dif-
ferences between Snit 1.3 and Snit 2.2.

WHERE CAN I DOWNLOAD SNIT?
Snit is part of Tcllib, the standard Tcl library, so you might already have it. It’s also available at the
Snit Home Page,http://www.wjduquette.com/snit.

WHAT ARE SNIT’S GOALS?
• A Snit object should be at least as efficient as a hand-coded Tcl object (seehttp://www.wjdu-

quette.com/tcl/objects.html).

• The fact that Snit was used in an object’s implementation should be transparent (and irrele-
vant) to clients of that object.

• Snit should be able to encapsulate objects from other sources, particularly Tk widgets.

• Snit megawidgets should be (to the extent possible) indistinguishable in interface from Tk
widgets.

• Snit should be Tclish--that is, rather than trying to emulate C++, Smalltalk, or anything else, it
should try to emulate Tcl itself.

• It should have a simple, easy-to-use, easy-to-remember syntax.

HOW IS SNIT DIFFERENT FROM OTHER OO FRAMEWORKS?
Snit is unique among Tcl object systems in that it is based not on inheritance but on delegation. Object
systems based on inheritance only allow you to inherit from classes defined using the same system, and
that’s a shame. InTcl, an object is anything that acts like an object; it shouldn’t matter how the object
was implemented. Idesigned Snit to help me build applications out of the materials at hand; thus, Snit
is designed to be able to incorporate and build on any object, whether it’s a hand-coded object, a Tk

tcllib 2.2 1

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

widget, an Incr Tcl object, a BWidget or almost anything else.

Note that you can achieve the effect of inheritance usingCOMPONENTS andDELEGATION --and
you can inherit from anything that looks like a Tcl object.

WHAT CAN I DO WITH SNIT?
Using Snit, a programmer can:

• Create abstract data types and Tk megawidgets.

• Define instance variables, type variables, and Tk-style options.

• Define constructors, destructors, instance methods, type methods, procs.

• Assemble a type out of component types.Instance methods and options can be delegated to
the component types automatically.

SNIT VERSIONS
WHICH VERSION OF SNIT SHOULD I USE?

The current Snit distribution includes two versions, Snit 1.3 and Snit 2.2.The reason that both are
included is that Snit 2.2 takes advantage of a number of new features of Tcl 8.5 to improve run-time
efficiency; as a side-effect, the ugliness of Snit’s error messages and stack traces has been reduced con-
siderably. Thecost of using Snit 2.2, of course, is that you must target Tcl 8.5.

Snit 1.3, on the other hand, lacks Snit 2.2’s optimizations, but requires only Tcl 8.3 and later.

In short, if you’re targetting Tcl 8.3 or 8.4 you should use Snit 1.3. If you can afford to target Tcl 8.5,
you should definitely use Snit 2.2. If you will be targetting both, you can use Snit 1.3 exclusively, or (if
your code is unaffected by the minor incompatibilities between the two versions) you can use Snit 1.3
for Tcl 8.4 and Snit 2.2 for Tcl 8.5.

HOW DO I SELECT THE VERSION OF SNIT I WANT T O USE?
To always use Snit 1.3 (or a later version of Snit 1.x), invoke Snit as follows:

package require snit 1.3

To always use Snit 2.2 (or a later version of Snit 2.x), say this instead:

package require snit 2.2

Note that if you request Snit 2.2 explicitly, your application will halt with Tcl 8.4, since Snit 2.2 is
unavailable for Tcl 8.4.

If you wish your application to always use the latest available version of Snit, don’t specify a version
number:

package require snit

Tcl will find and load the latest version that’s available relative to the version of Tcl being used. In this
case, be careful to avoid using any incompatible features.

HOW ARE SNIT 1.3 AND SNIT 2.2 INCOMPATIBLE?
To the extent possible, Snit 2.2 is intended to be a drop-in replacement for Snit 1.3. Unfortunately,
some incompatibilities were inevitable because Snit 2.2 uses Tcl 8.5’s new namespace ensemble
mechanism to implement subcommand dispatch. This approach is much faster than the mechanism
used in Snit 1.3, and also results in much better error messages; however, it also places new constraints
on the implementation.

There are four specific incompatibilities between Snit 1.3 and Snit 2.2.

• Snit 1.3 supports implicit naming of objects.Suppose you define a new snit::type calleddog.
You can create instances ofdog in three ways:

dog spot ;# Explicit naming
set obj1 [dog %AUTO%] ;#Automatic naming

tcllib 2.2 2

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

set obj2 [dog] ;# Implicit naming

In Snit 2.2, type commands are defined using thenamespace ensemblemechanism; and
namespace ensembledoesn’t allow an ensemble command to be called without a subcom-
mand. Inshort, usingnamespace ensemblethere’s no way to support implicit naming.

All is not lost, however. If the type has no type methods, then the type command is a simple
command rather than an ensemble, andnamespace ensembleis not used. In this case,
implicit naming is still possible.

In short, you can have implicit naming if you’re willing to do without type methods (including
the standard type methods, like$type info). To do so, use the-hastypemethodspragma:

pragma -hastypemethods 0

• Hierarchical methods and type methods are implemented differently in Snit 2.2.

A hierarchical method is an instance method which has subcommands; these subcommands
are themselves methods.The Tk text widget’s tag command and its subcommands are exam-
ples of hierarchical methods.You can implement such subcommands in Snit simply by
including multiple words in the method names:

method {tag configure} {tag args} { ... }

method {tag cget} {tag option} {...}

Here we’ve implicitly defined atag method which has two subcommands,configureandcget.

In Snit 1.3, hierarchical methods could be called in two ways:

$obj tag cget -myoption ;# The good way
$obj {tag cget} -myoption ;# The weird way

In the second call, we see that a hierarchical method or type method is simply one whose
name contains multiple words.

In Snit 2.2 this is no longer the case, and the "weird" way of calling hierarchical methods and
type methods no longer works.

• The third incompatibility derives from the second. In Snit 1.3, hierarchical methods were also
simply methods whose name contains multiple words. As a result, $obj info methods
returned the full names of all hierarchical methods. In the example above, the list returned by
$obj info methodswould includetag configure andtag cgetbut not tag, since tag is defined
only implicitly.

In Snit 2.2, hierarchical methods and type methods are no longer simply ones whose name
contains multiple words; in the above example, the list returned by$obj info methodswould
includetag but not tag configureor tag cget.

• The fourth incompatibility is due to a new feature. Snit2.2 uses the new namespace path
command so that a type’s code can call any command defined in the type’s parent namespace
without qualification or importation.For example, suppose you have a package called
mypackagewhich defines a number of commands including a type,::mypackage::mytype.
Thanks tonamespace path, the type’s code can call any of the other commands defined in
::mypackage::.

This is extremely convenient. However, it also means that commands defined in the parent

tcllib 2.2 3

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

namespace,::mypackage:: can block the type’s access to identically named commands in the
global namespace. This can lead to bugs. For example, Tcllib includes a type called
::tie::std::file . This type’s code calls the standardfile command. Whenrun with Snit 2.2, the
code broke-- the type’s command,::tie::std::file , is itself a command in the type’s parent
namespace, and so instead of calling the standardfile command, the type found itself calling
itself.

ARE THERE OTHER DIFFERENCES BETWEEN SNIT 1.X AND SNIT 2.2?
Yes.

• Method dispatch is considerably faster.

• Many error messages and stack traces are cleaner.

• The -simpledispatchpragma is obsolete, and ignored if present. In Snit 1.x,-simpledispatch
substitutes a faster mechanism for method dispatch, at the cost of losing certain features.Snit
2.2 method dispatch is faster still in all cases, so-simpledispatchis no longer needed.

• In Snit 2.2, a type’s code (methods, type methods, etc.) can call commands from the type’s
parent namespace without qualifying or importing them, i.e., type::parentns::mytype’s code
can call::parentns::someprocas justsomeproc.

This is extremely useful when a type is defined as part of a larger package, and shares a parent
namespace with the rest of the package; it means that the type can call other commands
defined by the package without any extra work.

This feature depends on the new Tcl 8.5 namespace pathcommand, which is why it hasn’t
been implemented for V1.x. V1.x code can achieve something similar by placing

namespace import [namespace parent]::*

in a type constructor.This is less useful, however, as it picks up only those commands which
have already been exported by the parent namespace at the time the type is defined.

OBJECTS
WHAT IS AN OBJECT?

A full description of object-oriented programming is beyond the scope of this FAQ, obviously. Insim-
ple terms, an object is an instance of an abstract data type--a coherent bundle of code and data.There
are many ways to represent objects in Tcl/Tk; the best known examples are the Tk widgets.

A Tk widget is an object; it is represented by a Tcl command. The object’s methods are subcommands
of the Tcl command. The object’s properties are options accessed using theconfigure andcgetmeth-
ods. Snituses the same conventions as Tk widgets do.

WHAT IS AN A BSTRACT DAT A TYPE?
In computer science terms, an abstract data type is a complex data structure along with a set of opera-
tions--a stack, a queue, a binary tree, etc--that is to say, in modern terms, an object. In systems that
include some form of inheritance the word class is usually used instead ofabstract data type, but as
Snit doesn’t implement inheritance as it’s ordinarily understood the older term seems more appropriate.
Sometimes this is calledobject-basedprogramming as opposed to object-oriented programming.Note
that you can easily create the effect of inheritance usingCOMPONENTS andDELEGATION .

In Snit, as in Tk, atype is a command that creates instances -- objects -- which belong to the type.
Most types define some number ofoptions which can be set at creation time, and usually can be
changed later.

Further, an instanceis also a Tcl command--a command that gives access to the operations which are
defined for that abstract data type.Conventionally, the operations are defined as subcommands of the
instance command.For example, to insert text into a Tk text widget, you use the text widget’s insert
subcommand:

Create a text widget and insert some text in it.
text .mytext -width 80 -height 24
.mytext insert end "Howdy!"

tcllib 2.2 4

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

In this example,text is thetypecommand and.mytext is theinstancecommand.

In Snit, object subcommands are generally calledINSTANCE METHODS .

WHAT K INDS OF ABSTRACT DAT A TYPES DOES SNIT PROVIDE?
Snit allows you to define three kinds of abstract data type:

• snit::type

• snit::widget

• snit::widgetadaptor

WHAT IS A SNIT::TYPE?
A snit::type is a non-GUI abstract data type, e.g., a stack or a queue.snit::types are defined using the
snit::type command. For example, if you were designing a kennel management system for a dog
breeder, you’d need a dog type.

% snit::type dog {
...

}
::dog
%

This definition defines a new command (::dog, in this case) that can be used to define dog objects.

An instance of asnit::type can have INSTANCE METHODS , INSTANCE VARIABLES ,
OPTIONS, and COMPONENTS. The type itself can have TYPE METHODS , TYPE VARI-
ABLES, TYPE COMPONENTS, andPROCS.

WHAT IS A SNIT::WIDGET?, THE SHOR T STORY
A snit::widget is a Tk megawidget built using Snit; it is very similar to asnit::type. SeeWIDGETS .

WHAT IS A SNIT::WIDGETADAPTOR?, THE SHOR T STORY
A snit::widgetadaptor uses Snit to wrap an existing widget type (e.g., a Tk label), modifying its inter-
face to a lesser or greater extent. It is very similar to asnit::widget. SeeWIDGET ADAPTORS .

HOW DO I C REATE AN INSTANCE OF A SNIT::TYPE?
You create an instance of asnit::type by passing the new instance’s name to the type’s create method.
In the following example, we create adogobject calledspot.

% snit::type dog {
....

}
::dog
% dog create spot
::spot
%

In general, thecreate method name can be omitted so long as the instance name doesn’t conflict with
any defined TYPE METHODS . (SeeTYPE COMPONENTS for the special case in which this
doesn’t work.) Sothe following example is identical to the previous example:

% snit::type dog {
....

}
::dog
% dog spot
::spot
%

This document generally uses the shorter form.

If the dog type definesOPTIONS, these can usually be given defaults at creation time:

tcllib 2.2 5

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

% snit::type dog {
option -breed mongrel
option -color brown

method bark {} { return "$self barks." }
}
::dog
% dog create spot -breed dalmation -color spotted
::spot
% spot cget -breed
dalmation
% spot cget -color
spotted
%

Once created, the instance name now names a new Tcl command that is used to manipulate the object.
For example, the following code makes the dog bark:

% spot bark
::spot barks.
%

HOW DO I R EFER TO AN OBJECT INDIRECTLY?
Some programmers prefer to save the object name in a variable, and reference it that way. For exam-
ple,

% snit::type dog { ... }
::dog
% set d [dog spot -breed dalmation -color spotted]
::spot
% $d cget -breed
dalmation
% $d bark
::spot barks.
%

If you prefer this style, you might prefer to have Snit generate the instance’s name automatically.

HOW CAN I GENERATE THE OBJECT NAME AUTOMATICALLY?
If you’d like Snit to generate an object name for you, use the%AUTO% keyword as the requested
name:

% snit::type dog { ... }
::dog
% set d [dog %AUTO%]
::dog2
% $d bark
::dog2 barks.
%

The%AUTO% keyword can be embedded in a longer string:

% set d [dog obj_%AUTO%]
::obj_dog4
% $d bark
::obj_dog4 barks.
%

tcllib 2.2 6

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

CAN TYPES BE RENAMED?
Tcl’s renamecommand renames other commands.It’s a common technique in Tcl to modify an exist-
ing command by renaming it and defining a new command with the original name; the new command
usually calls the renamed command.

snit::type commands, however, should never be renamed; to do so breaks the connection between the
type and its objects.

CAN OBJECTS BE RENAMED?
Tcl’s renamecommand renames other commands.It’s a common technique in Tcl to modify an exist-
ing command by renaming it and defining a new command with the original name; the new command
usually calls the renamed command.

All Snit objects (includingwidgetsand widgetadaptors) can be renamed, though this flexibility has
some consequences:

• In an instance method, the implicit argumentself will always contain the object’s current
name, so instance methods can always call other instance methods using$self.

• If the object is renamed, however, then$self’s value will change. Therefore, don’t use$self
for anything that will break if$self changes. For example, don’t pass a callback command to
another object like this:

.btn configure -command [list $self ButtonPress]

You’ll get an error if.btn calls your command after your object is renamed.

• Instead, your object should define its callback command like this:

.btn configure -command [mymethod ButtonPress]

The mymethod command returns code that will call the desired method safely; the caller of
the callback can add additional arguments to the end of the command as usual.

• Every object has a private namespace; the name of this namespace is available in method bod-
ies, etc., as the value of the implicit argumentselfns. This value is constant for the life of the
object. Use$selfnsinstead of$self if you need a unique token to identify the object.

• When asnit::widget’s instance command is renamed, its Tk window name remains the same
-- and is still extremely important. Consequently, the Tk window name is available in method
bodies as the value of the implicit argumentwin. This value is constant for the life of the
object. Whencreating child windows, it’s best to use$win.child rather than$self.childas the
name of the child window.

HOW DO I D ESTROY A SNIT OBJECT?
Any Snit object of any type can be destroyed by renaming it to the empty string using the Tclrename
command.

Snit megawidgets (i.e., instances ofsnit::widget andsnit::widgetadaptor) can be destroyed like any
other widget: by using the Tkdestroy command on the widget or on one of its ancestors in the window
hierarchy.

Every instance of asnit::type has adestroymethod:

% snit::type dog { ... }
::dog
% dog spot
::spot
% spot bark
::spot barks.
% spot destroy

tcllib 2.2 7

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

% spot barks
invalid command name "spot"
%

Finally, every Snit type has a type method calleddestroy; calling it destroys the type and all of its
instances:

% snit::type dog { ... }
::dog
% dog spot
::spot
% spot bark
::spot barks.
% dog destroy
% spot bark
invalid command name "spot"
% dog fido
invalid command name "dog"
%

INSTANCE METHODS
WHAT IS AN I NSTANCE METHOD?

An instance method is a procedure associated with a specific object and called as a subcommand of the
object’s command. Itis given free access to all of the object’s type variables, instance variables, and so
forth.

HOW DO I D EFINE AN INSTANCE METHOD?
Instance methods are defined in the type definition using themethod statement. Considerthe follow-
ing code that might be used to add dogs to a computer simulation:

% snit::type dog {
method bark {} {

return "$self barks."
}

method chase {thing} {
return "$self chases $thing."

}
}
::dog
%

A dog can bark, and it can chase things.

The method statement looks just like a normal Tclproc, except that it appears in asnit::type defini-
tion. Noticethat every instance method gets an implicit argument calledself; this argument contains
the object’s name. (There’s more on implicit method arguments below.)

HOW DOES A CLIENT CALL AN INSTANCE METHOD?
The method name becomes a subcommand of the object.For example, let’s put a simulated dog
through its paces:

% dog spot
::spot
% spot bark
::spot barks.
% spot chase cat
::spot chases cat.
%

tcllib 2.2 8

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

HOW DOES AN INSTANCE METHOD CALL ANOTHER INSTANCE METHOD?
If method A needs to call method B on the same object, it does so just as a client does: it calls method
B as a subcommand of the object itself, using the object name stored in the implicit argumentself.

Suppose, for example, that our dogs never chase anything without barking at them:

% snit::type dog {
method bark {} {

return "$self barks."
}

method chase {thing} {
return "$self chases $thing. [$self bark]"

}
}
::dog
% dog spot
::spot
% spot bark
::spot barks.
% spot chase cat
::spot chases cat. ::spot barks.
%

ARE THERE ANY LIMIT ATIONS ON INSTANCE METHOD NAMES?
Not really, so long as you avoid the standard instance method names:configure, configurelist, cget,
destroy, and info. Also, method names consisting of multiple words define hierarchical methods.

WHAT IS A H IERARCHICAL METHOD?
An object’s methods are subcommands of the object’s instance command. Hierarchical methods allow
an object’s methods to have subcommands of their own; and these can in turn have subcommands, and
so on. This allows the programmer to define a tree-shaped command structure, such as is used by many
of the Tk widgets--the subcommands of the Tktext widget’stag method are hierarchical methods.

HOW DO I D EFINE A HIERARCHICAL METHOD?
Define methods whose names consist of multiple words. Thesewords define the hierarchy implicitly.
For example, the following code defines atag method with subcommandscgetandconfigure:

snit::widget mytext {
method {tag configure} {tag args} { ... }

method {tag cget} {tag option} {...}
}

Note that there is no explicit definition for thetag method; it is implicit in the definition oftag config-
ure andtag cget. If you tried to definetag explicitly in this example, you’d get an error.

HOW DO I C ALL HIERARCHICAL METHODS?
As subcommands of subcommands.

% mytext .text
.text
% .text tag configure redtext -foreground red -background black
% .text tag cget redtext -foreground
red
%

tcllib 2.2 9

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

HOW DO I M AKE AN INSTANCE METHOD PRIV ATE?
It’s often useful to define private methods, that is, instance methods intended to be called only by other
methods of the same object.

Snit doesn’t implement any access control on instance methods, so all methods arede factopublic.
Conventionally, though, the names of public methods begin with a lower-case letter, and the names of
private methods begin with an upper-case letter.

For example, suppose our simulated dogs only bark in response to other stimuli; they nev er bark just
for fun. So thebark method becomesBark to indicate that it is private:

% snit::type dog {
Private by convention: begins with uppercase letter.
method Bark {} {

return "$self barks."
}

method chase {thing} {
return "$self chases $thing. [$self Bark]"

}
}
::dog
% dog fido
::fido
% fido chase cat
::fido chases cat. ::fido barks.
%

ARE THERE ANY LIMIT ATIONS ON INSTANCE METHOD ARGUMENTS?
Method argument lists are defined just like normal Tcl proc argument lists; in particular, they can
include arguments with default values and theargsargument.

However, every method also has a number of implicit arguments provided by Snit in addition to those
explicitly defined. The names of these implicit arguments may not used to name explicit arguments.

WHAT I MPLICIT ARGUMENTS ARE PASSED T O EACH I NSTANCE METHOD?
The arguments implicitly passed to every method aretype, selfns, win, andself.

WHAT IS $TYPE?
The implicit argumenttype contains the fully qualified name of the object’s type:

% snit::type thing {
method mytype {} {

return $type
}

}
::thing
% thing something
::something
% something mytype
::thing
%

WHAT IS $SELF?
The implicit argumentselfcontains the object’s fully qualified name.

If the object’s command is renamed, then$self will change to match in subsequent calls. Thus, your
code should not assume that$self is constant unless you know for sure that the object will never be
renamed.

% snit::type thing {

tcllib 2.2 10

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

method myself {} {
return $self

}
}
::thing
% thing mutt
::mutt
% mutt myself
::mutt
% rename mutt jeff
% jeff myself
::jeff
%

WHAT IS $SELFNS?
Each Snit object has a private namespace in which to store itsINSTANCE VARIABLES and
OPTIONS. The implicit argument selfns contains the name of this namespace; its value never
changes, and is constant for the life of the object, even if the object’s name changes:

% snit::type thing {
method myNameSpace {} {

return $selfns
}

}
::thing
% thing jeff
::jeff
% jeff myNameSpace
::thing::Snit_inst3
% rename jeff mutt
% mutt myNameSpace
::thing::Snit_inst3
%

The above example reveals how Snit names an instance’s private namespace; however, you should not
write code that depends on the specific naming convention, as it might change in future releases.

WHAT IS $WIN?
The implicit argumentwin is defined for all Snit methods, though it really makes sense only for those
of WIDGETS andWIDGET AD APTORS. $win is simply the original name of the object, whether
it’s been renamed or not.For widgets and widgetadaptors, it is also therefore the name of a Tk win-
dow.

When asnit::widgetadaptor is used to modify the interface of a widget or megawidget, it must
rename the widget’s original command and replace it with its own.

Thus, usingwin whenever the Tk window name is called for means that asnit::widget or snit::wid-
getadaptorcan be adapted by asnit::widgetadaptor. SeeWIDGETS for more information.

HOW DO I PASS AN INSTANCE METHOD AS A CALLB ACK?
It depends on the context.

Suppose in my application I have adog object namedfido, and I want fido to bark when a Tk button
called.bark is pressed. In this case, I create the callback command in the usual way, using list:

button .bark -text "Bark!" -command [list fido bark]

In typical Tcl style, we use a callback to hook two independent components together. But suppose that
thedog object has a graphical interface and owns the button itself?In this case, thedog must pass one
of its own instance methods to the button it owns. Theobvious thing to do is this:

tcllib 2.2 11

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

% snit::widget dog {
constructor {args} {

#...
button $win.barkbtn -text "Bark!" -command [list $self bark]
#...

}
}
::dog
%

(Note that in this example, ourdog becomes asnit::widget, because it has GUI behavior. SeeWID-
GETS for more.) Thus, if we create adog called.spot, it will create a Tk button called.spot.barkbtn;
when pressed, the button will call$self bark.

Now, this will work--provided that.spot is never renamed to something else. But surely renaming wid-
gets is abnormal?And so it is--unless.spot is the hull component of asnit::widgetadaptor. If it i s,
then it will be renamed, and.spot will become the name of thesnit::widgetadaptor object. Whenthe
button is pressed, the command$self bark will be handled by thesnit::widgetadaptor, which might
or might not do the right thing.

There’s a safer way to do it, and it looks like this:

% snit::widget dog {
constructor {args} {

#...
button $win.barkbtn -text "Bark!" -command [mymethod bark]
#...

}
}
::dog
%

The commandmymethod takes any number of arguments, and can be used like list to build up a call-
back command; the only difference is thatmymethod returns a form of the command that won’t
change even if the instance’s name changes.

On the other hand, you might prefer to allow a widgetadaptor to override a method such that your
renamed widget will call the widgetadaptor’s method instead of its own. In this case, using[list $self
bark] will do what you want...but this is a technique which should be used only in carefully controlled
circumstances.

HOW DO I D ELEGATE INSTANCE METHODS T O A COMPONENT?
SeeDELEGATION .

INSTANCE VARIABLES
WHAT IS AN I NSTANCE VARIABLE?

An instance variable is a private variable associated with some particular Snit object. Instance vari-
ables can be scalars or arrays.

HOW IS A SCALAR INSTANCE VARIABLE DEFINED?
Scalar instance variables are defined in the type definition using thevariable statement. You can sim-
ply name it, or you can initialize it with a value:

snit::type mytype {
Define variable "greeting" and initialize it with "Howdy!"
variable greeting "Howdy!"

}

tcllib 2.2 12

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

HOW IS AN A RRAY I NSTANCE VARIABLE DEFINED?
Array instance variables are also defined in the type definition using thevariable command. You can
initialize them at the same time by specifying the-array option:

snit::type mytype {
Define array variable "greetings"
variable greetings -array {

formal "Good Evening"
casual "Howdy!"

}
}

WHAT HAPPENS IF I DON’T INITIALIZE AN INSTANCE VARIABLE?
Variables do not really exist until they are given values. Ifyou do not initialize a variable when you
define it, then you must be sure to assign a value to it (in the constructor, say, or in some method)
before you reference it.

ARE THERE ANY LIMIT ATIONS ON INSTANCE VARIABLE NAMES?
Just a few.

First, every Snit object has a built-in instance variable calledoptions, which should never be redefined.

Second, all names beginning with "Snit_" are reserved for use by Snit internal code.

Third, instance variable names containing the namespace delimiter (::) are likely to cause great confu-
sion.

DO I NEED TO DECLARE MY INSTANCE VARIABLES IN MY METHODS?
No. Once you’ve defined an instance variable in the type definition, it can be used in any instance code
(instance methods, the constructor, and the destructor) without declaration. This differs from normal
Tcl practice, in which all non-local variables in a proc need to be declared.

There is a speed penalty to having all instance variables implicitly available in all instance code.Even
though your code need not declare the variables explicitly, Snit must still declare them, and that takes
time. If you have ten instance variables, a method that uses none of them must still pay the declaration
penalty for all ten.In most cases, the additional runtime cost is negligible. If extreme cases, you might
wish to avoid it; there are two methods for doing so.

The first is to define a single instance variable, an array, and store all of your instance data in the array.
This way, you’re only paying the declaration penalty for one variable--and you probably need the vari-
able most of the time anyway. Thismethod breaks down if your instance variables include multiple
arrays; in Tcl 8.5, however, thedict command might come to your rescue.

The second method is to declare your instance variables explicitly in your instance code, whilenot
including them in the type definition:

snit::type dog {
constructor {} {

variable mood

set mood happy
}

method setmood {newMood} {
variable mood

set mood $newMood
}

method getmood {} {
variable mood

tcllib 2.2 13

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

return $mood
}

}

This allows you to ensure that only the required variables are included in each method, at the cost of
longer code and run-time errors when you forget to declare a variable you need.

HOW DO I PASS AN INSTANCE VARIABLE’S NAME T O ANOTHER OBJECT?
In Tk, it’s common to pass a widget a variable name; for example, Tk label widgets have a-textvari-
able option which names the variable which will contain the widget’s text. Thisallows the program to
update the label’s value just by assigning a new value to the variable.

If you naively pass the instance variable name to the label widget, you’ll be confused by the result; Tk
will assume that the name names a global variable. Instead,you need to provide a fully-qualified vari-
able name.From within an instance method or a constructor, you can fully qualify the variable’s name
using themyvar command:

snit::widget mywidget {
variable labeltext ""

constructor {args} {
...

label $win.label -textvariable [myvar labeltext]

...
}

}

HOW DO I M AKE AN INSTANCE VARIABLE PUBLIC?
Practically speaking, you don’t. Instead,you’ll implement public variables asOPTIONS. Alterna-
tively, you can writeINSTANCE METHODS to set and get the variable’s value.

OPTIONS
WHAT IS AN OPTION?

A type’s options are the equivalent of what other object-oriented languages would call public member
variables or properties: they are data values which can be retrieved and (usually) set by the clients of an
object.

Snit’s implementation of options follows the Tk model fairly exactly, except thatsnit::type objects
usually don’t interact withTHE TK OPTION D AT ABASE; snit::widget and snit::widgetadaptor
objects, on the other hand, always do.

HOW DO I D EFINE AN OPTION?
Options are defined in the type definition using theoption statement. Considerthe following type, to
be used in an application that manages a list of dogs for a pet store:

snit::type dog {
option -breed -default mongrel
option -color -default brown
option -akc -default 0
option -shots -default 0

}

According to this, a dog has four notable properties: a breed, a color, a flag that says whether it’s pedi-
greed with the American Kennel Club, and another flag that says whether it has had its shots.The
default dog, evidently, is a brown mutt.

There are a number of options you can specify when defining an option; if-default is the only one, you
can omit the word-default as follows:

tcllib 2.2 14

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

snit::type dog {
option -breed mongrel
option -color brown
option -akc 0
option -shots 0

}

If no -default value is specified, the option’s default value will be the empty string (but seeTHE TK
OPTION DAT ABASE).

The Snit man page refers to options like these as "locally defined" options.

HOW CAN A CLIENT SET OPTIONS A T OBJECT CREATION?
The normal convention is that the client may pass any number of options and their values after the
object’s name at object creation.For example, the::dog command defined in the previous answer can
now be used to create individual dogs. Any or all of the options may be set at creation time.

% dog spot -breed beagle -color "mottled" -akc 1 -shots 1
::spot
% dog fido -shots 1
::fido
%

So ::spot is a pedigreed beagle;::fido is a typical mutt, but his owners evidently take care of him,
because he’s had his shots.

Note: If the type defines a constructor, it can specify a different object-creation syntax.SeeCON-
STRUCTORS for more information.

HOW CAN A CLIENT RETRIEVE AN OPTION’S VALUE?
Retrieve option values using thecgetmethod:

% spot cget -color
mottled
% fido cget -breed
mongrel
%

HOW CAN A CLIENT SET OPTIONS AFTER OBJECT CREATION?
Any number of options may be set at one time using theconfigure instance method. Suppose that
closer inspection shows that ::fido is not a brown mongrel, but rather a rare Arctic Boar Hound of a
lovely dun color:

% fido configure -color dun -breed "Arctic Boar Hound"
% fido cget -color
dun
% fido cget -breed
Arctic Boar Hound

Alternatively, theconfigurelist method takes a list of options and values; occasionally this is more con-
venient:

% set features [list -color dun -breed "Arctic Boar Hound"]
-color dun -breed {Arctic Boar Hound}
% fido configurelist $features
% fido cget -color
dun
% fido cget -breed
Arctic Boar Hound
%

tcllib 2.2 15

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

In Tcl 8.5, the* keyword can be used withconfigure in this case:

% set features [list -color dun -breed "Arctic Boar Hound"]
-color dun -breed {Arctic Boar Hound}
% fido configure {*}$features
% fido cget -color
dun
% fido cget -breed
Arctic Boar Hound
%

The results are the same.

HOW SHOULD AN INSTANCE METHOD ACCESS AN OPTION VALUE?
There are two ways an instance method can set and retrieve an option’s value. Oneis to use theconfig-
ure andcgetmethods, as shown below.

% snit::type dog {
option -weight 10

method gainWeight {} {
set wt [$self cget -weight]
incr wt
$self configure -weight $wt

}
}
::dog
% dog fido
::fido
% fido cget -weight
10
% fido gainWeight
% fido cget -weight
11
%

Alternatively, Snit provides a built-in array instance variable calledoptions. The indices are the option
names; the values are the option values. ThemethodgainWeight can thus be rewritten as follows:

method gainWeight {} {
incr options(-weight)

}

As you can see, using theoptions variable involves considerably less typing and is the usual way to do
it. But if you use-configuremethodor -cgetmethod(described in the following answers), you might
wish to use theconfigure andcgetmethods anyway, just so that any special processing you’ve imple-
mented is sure to get done. Also, if the option is delegated to a component thenconfigure andcgetare
the only way to access it without accessing the component directly.SeeDELEGATION for more
information.

HOW CAN I MAKE AN OPTION READ-ONLY?
Define the option with-readonly yes.

Suppose you’ve got an option that determines how instances of your type are constructed; it must be set
at creation time, after which it’s constant. For example, a dog never changes its breed; it might or
might not have had its shots, and if not can have them at a later time.-breed should be read-only, but
-shotsshould not be.

% snit::type dog {
option -breed -default mongrel -readonly yes

tcllib 2.2 16

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

option -shots -default no
}
::dog
% dog fido -breed retriever
::fido
% fido configure -shots yes
% fido configure -breed terrier
option -breed can only be set at instance creation
%

HOW CAN I CATCH ACCESSES TO AN OPTION’S VALUE?
Define a-cgetmethodfor the option.

WHAT IS A -CGETMETHOD?
A -cgetmethod is a method that’s called whenever the related option’s value is queried via thecget
instance method. The handler can compute the option’s value, retrieve it from a database, or do any-
thing else you’d like it to do.

Here’s what the default behavior would look like if written using a-cgetmethod:

snit::type dog {
option -color -default brown -cgetmethod GetOption

method GetOption {option} {
return $options($option)

}
}

Any instance method can be used, provided that it takes one argument, the name of the option whose
value is to be retrieved.

HOW CAN I CATCH CHANGES T O AN OPTION’S VALUE?
Define a-configuremethodfor the option.

WHAT IS A -CONFIGUREMETHOD?
A -configuremethodis a method that’s called whenever the related option is given anew value via the
configure or configurelist instance methods. The method can pass the value on to some other object,
store it in a database, or do anything else you’d like it to do.

Here’s what the default configuration behavior would look like if written using a-configuremethod:

snit::type dog {
option -color -default brown -configuremethod SetOption

method SetOption {option value} {
set options($option) $value

}
}

Any instance method can be used, provided that it takes two arguments, the name of the option and the
new value.

Note that if your method doesn’t store the value in theoptions array, the options array won’t get
updated.

HOW CAN I VALID ATE AN OPTION’S VALUE?
Define a-validatemethod.

WHAT IS A -VALID ATEMETHOD?
A -validatemethod is a method that’s called whenever the related option is given a new value via the
configure or configurelist instance methods.It’s the method’s responsibility to determine whether the
new value is valid, and throw an error if it isn’t. The-validatemethod, if any, is called before the value

tcllib 2.2 17

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

is stored in theoptionsarray; in particular, it’s called before the-configuremethod, if any.

For example, suppose an option always takes a Boolean value. You can ensure that the value is in fact
a valid Boolean like this:

% snit::type dog {
option -shots -default no -validatemethod BooleanOption

method BooleanOption {option value} {
if {![string is boolean -strict $value]} {

error "expected a boolean value, got \"$value\""
}

}
}
::dog
% dog fido
% fido configure -shots yes
% fido configure -shots NotABooleanValue
expected a boolean value, got "NotABooleanValue"
%

Note that the same-validatemethodcan be used to validate any number of boolean options.

Any method can be a-validatemethod provided that it takes two arguments, the option name and the
new option value.

TYPE VARIABLES
WHAT IS A T YPE VARIABLE?

A type variable is a private variable associated with a Snit type rather than with a particular instance of
the type. In C++ and Java, the termstatic member variableis used for the same notion.Type variables
can be scalars or arrays.

HOW IS A SCALAR TYPE VARIABLE DEFINED?
Scalar type variables are defined in the type definition using thetypevariable statement. You can sim-
ply name it, or you can initialize it with a value:

snit::type mytype {
Define variable "greeting" and initialize it with "Howdy!"
typevariable greeting "Howdy!"

}

Every object of typemytype now has access to a single variable calledgreeting.

HOW IS AN A RRAY-VALUED TYPE VARIABLE DEFINED?
Array-valued type variables are also defined using thetypevariable command; to initialize them,
include the-array option:

snit::type mytype {
Define typearray variable "greetings"
typevariable greetings -array {

formal "Good Evening"
casual "Howdy!"

}
}

WHAT HAPPENS IF I DON’T INITIALIZE A TYPE VARIABLE?
Variables do not really exist until they are given values. Ifyou do not initialize a variable when you
define it, then you must be sure to assign a value to it (in the type constructor, say) before you reference
it.

tcllib 2.2 18

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

ARE THERE ANY LIMIT ATIONS ON TYPE VARIABLE NAMES?
Type variable names have the same restrictions as the names ofINSTANCE VARIABLES do.

DO I NEED TO DECLARE MY TYPE VARIABLES IN MY METHODS?
No. Once you’ve defined a type variable in the type definition, it can be used inINSTANCE METH-
ODS or TYPE METHODS without declaration. This differs from normal Tcl practice, in which all
non-local variables in a proc need to be declared.

Type variables are subject to the same speed/readability tradeoffs as instance variables; seeDo I need
to declare my instance variables in my methods?

HOW DO I PASS A TYPE VARIABLE’S NAME T O ANOTHER OBJECT?
In Tk, it’s common to pass a widget a variable name; for example, Tk label widgets have a-textvari-
able option which names the variable which will contain the widget’s text. Thisallows the program to
update the label’s value just by assigning a new value to the variable.

If you naively pass a type variable name to the label widget, you’ll be confused by the result; Tk will
assume that the name names a global variable. Instead,you need to provide a fully-qualified variable
name. Fromwithin an instance method or a constructor, you can fully qualify the type variable’s name
using themytypevar command:

snit::widget mywidget {
typevariable labeltext ""

constructor {args} {
...

label $win.label -textvariable [mytypevar labeltext]

...
}

}

HOW DO I M AKE A TYPE VARIABLE PUBLIC?
There are two ways to do this.The preferred way is to write a pair ofTYPE METHODS to set and
query the type variable’s value.

Type variables are stored in the type’s namespace, which has the same name as the type itself.Thus,
you can also publicize the type variable’s name in your documentation so that clients can access it
directly. For example,

snit::type mytype {
typevariable myvariable

}

set ::mytype::myvariable "New Value"

TYPE METHODS
WHAT IS A T YPE METHOD?

A type method is a procedure associated with the type itself rather than with any specific instance of
the type, and called as a subcommand of the type command.

HOW DO I D EFINE A TYPE METHOD?
Type methods are defined in the type definition using thetypemethodstatement:

snit::type dog {
List of pedigreed dogs
typevariable pedigreed

typemethod pedigreedDogs {} {
return $pedigreed

tcllib 2.2 19

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

}
}

Suppose thedog type maintains a list of the names of the dogs that have pedigrees. Thepedigreed-
Dogstype method returns this list.

The typemethodstatement looks just like anormal Tclproc, except that it appears in asnit::type defi-
nition. Noticethat every type method gets an implicit argument calledtype, which contains the fully-
qualified type name.

HOW DOES A CLIENT CALL A TYPE METHOD?
The type method name becomes a subcommand of the type’s command. For example, assuming that
the constructor adds each pedigreed dog to the list ofpedigreedDogs,

snit::type dog {
option -pedigreed 0

List of pedigreed dogs
typevariable pedigreed

typemethod pedigreedDogs {} {
return $pedigreed

}

...
}

dog spot -pedigreed 1
dog fido

foreach dog [dog pedigreedDogs] { ... }

ARE THERE ANY LIMIT ATIONS ON TYPE METHOD NAMES?
Not really, so long as you avoid the standard type method names:create, destroy, and info.

HOW DO I M AKE A TYPE METHOD PRIV ATE?
It’s sometimes useful to define private type methods, that is, type methods intended to be called only by
other type or instance methods of the same object.

Snit doesn’t implement any access control on type methods; by convention, the names of public meth-
ods begin with a lower-case letter, and the names of private methods begin with an upper-case letter.

Alternatively, a Snit proc can be used as a private type method; seePROCS.

ARE THERE ANY LIMIT ATIONS ON TYPE METHOD ARGUMENTS?
Method argument lists are defined just like normal Tcl proc argument lists; in particular, they can
include arguments with default values and theargsargument.

However, every type method is called with an implicit argument calledtype that contains the name of
the type command. In addition, type methods should by convention avoid using the names of the argu-
ments implicitly defined forINSTANCE METHODS .

HOW DOES AN INSTANCE OR TYPE METHOD CALL A TYPE METHOD?
If an instance or type method needs to call a type method, it should use$type to do so:

snit::type dog {

typemethod pedigreedDogs {} { ... }

typemethod printPedigrees {} {
foreach obj [$type pedigreedDogs] { ... }

}

tcllib 2.2 20

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

}

HOW DO I PASS A TYPE METHOD AS A CALLB ACK?
It’s common in Tcl to pass a snippet of code to another object, for it to call later.Because types cannot
be renamed, you can just use the type name, or, if the callback is registered from within a type method,
type. For example, suppose we want to print a list of pedigreed dogs when a Tk button is pushed:

button .btn -text "Pedigrees" -command [list dog printPedigrees]
pack .btn

Alternatively, from a method or type method you can use themytypemethod command, just as you
would usemymethod to define a callback command forINSTANCE METHODS .

CAN TYPE METHODS BE HIERARCHICAL?
Yes, you can define hierarchical type methods in just the same way as you can define hierarchical
instance methods. SeeINSTANCE METHODS for more.

PROCS
WHAT IS A PROC?

A Snit proc is really just a Tcl proc defined within the type’s namespace. You can use procs for private
code that isn’t related to any particular instance.

HOW DO I D EFINE A PROC?
Procs are defined by including aproc statement in the type definition:

snit::type mytype {
Pops and returns the first item from the list stored in the
listvar, updating the listvar
proc pop {listvar} { ... }

...
}

ARE THERE ANY LIMIT ATIONS ON PROC NAMES?
Any name can be used, so long as it does not begin withSnit_; names beginning withSnit_ are
reserved for Snit’s own use. However, the wise programmer will avoid proc names (set, list, if , etc.)
that would shadow standard Tcl command names.

proc names, being private, should begin with a capital letter according to convention; however, as there
are typically no publicprocs in the type’s namespace it doesn’t matter much either way.

HOW DOES A METHOD CALL A PROC?
Just like it calls any Tcl command.For example,

snit::type mytype {
Pops and returns the first item from the list stored in the
listvar, updating the listvar
proc pop {listvar} { ... }

variable requestQueue {}

Get one request from the queue and process it.
method processRequest {} {

set req [pop requestQueue]
}

}

HOW CAN I PASS A PROC TO ANOTHER OBJECT AS A CALLB ACK?
Themyproc command returns a callback command for theproc, just asmymethoddoes for a method.

tcllib 2.2 21

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

TYPE CONSTRUCTORS
WHAT IS A T YPE CONSTRUCTOR?

A type constructor is a body of code that initializes the type as a whole, rather like a C++ static initial-
izer. Thebody of a type constructor is executed once when the type is defined, and never again.

A type can have at most one type constructor.

HOW DO I D EFINE A TYPE CONSTRUCTOR?
A type constructor is defined by using thetypeconstructor statement in the type definition.For exam-
ple, suppose the type uses an array-valued type variable as a look-up table, and the values in the array
have to be computed at start-up.

% snit::type mytype {
typevariable lookupTable

typeconstructor {
array set lookupTable {key value...}

}
}

CONSTRUCTORS
WHAT IS A CONSTRUCTOR?

In object-oriented programming, an object’s constructor is responsible for initializing the object com-
pletely at creation time. The constructor receives the list of options passed to thesnit::type command’s
createmethod and can then do whatever it l ikes. Thatmight include computing instance variable val-
ues, reading data from files, creating other objects, updating type and instance variables, and so forth.

The constructor’s return value is ignored (unless it’s an error, of course).

HOW DO I D EFINE A CONSTRUCTOR?
A constructor is defined by using theconstructor statement in the type definition. Suppose that it’s
desired to keep a list of all pedigreed dogs.The list can be maintained in a type variable and retrieved
by a type method.Whenever a dog is created, it can add itself to the list--provided that it’s registered
with the American Kennel Club.

% snit::type dog {
option -akc 0

typevariable akcList {}

constructor {args} {
$self configurelist $args

if {$options(-akc)} {
lappend akcList $self

}
}

typemethod akclist {} {
return $akcList

}
}
::dog
% dog spot -akc 1
::spot
% dog fido
::fido
% dog akclist
::spot
%

tcllib 2.2 22

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

WHAT DOES THE DEFAULT C ONSTRUCTOR DO?
If you don’t provide a constructor explicitly, you get the default constructor, which is identical to the
explicitly-defined constructor shown here:

snit::type dog {
constructor {args} {

$self configurelist $args
}

}

When the constructor is called,args will be set to the list of arguments that follow the object’s name.
The constructor is allowed to interpret this list any way it chooses; the normal convention is to assume
that it’s a list of option names and values, as shown in the example above. If you simply want to save
the option values, you should use theconfigurelist method, as shown.

CAN I CHOOSE A DIFFERENT SET OF ARGUMENTS FOR THE CONSTRUCTOR?
Yes, you can.For example, suppose we wanted to be sure that the breed was explicitly stated for every
dog at creation time, and couldn’t be changed thereafter. One way to do that is as follows:

% snit::type dog {
variable breed

option -color brown
option -akc 0

constructor {theBreed args} {
set breed $theBreed
$self configurelist $args

}

method breed {} { return $breed }
}
::dog
% dog spot dalmatian -color spotted -akc 1
::spot
% spot breed
dalmatian

The drawback is that this syntax is non-standard, and may limit the compatibility of your new type with
other people’s code. For example, Snit assumes that it can createCOMPONENTS using the standard
creation syntax.

ARE THERE ANY LIMIT ATIONS ON CONSTRUCTOR ARGUMENTS?
Constructor argument lists are subject to the same limitations as those on instance method argument
lists. It has the same implicit arguments, and can contain default values and theargsargument.

IS THERE ANYTHING SPECIAL ABOUT WRITING THE CONSTRUCTOR?
Yes. Writing the constructor can be tricky if you’re delegating options to components, and there are
specific issues relating tosnit::widgets and snit::widgetadaptors. SeeDELEGATION , WIDGETS ,
WIDGET ADAPTORS , andTHE TK OPTION D AT ABASE.

DESTRUCTORS
WHAT IS A DESTRUCTOR?

A destructor is a special kind of method that’s called when an object is destroyed. It’s responsible for
doing any necessary clean-up when the object goes away: destroying COMPONENTS, closing files,
and so forth.

HOW DO I D EFINE A DESTRUCTOR?
Destructors are defined by using thedestructor statement in the type definition.

Suppose we’re maintaining a list of pedigreed dogs; then we’ll want to remove dogs from it when they

tcllib 2.2 23

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

are destroyed.

snit::type dog {
option -akc 0

typevariable akcList {}

constructor {args} {
$self configurelist $args

if {$options(-akc)} {
lappend akcList $self

}
}

destructor {
set ndx [lsearch $akcList $self]

if {$ndx != -1} {
set akcList [lreplace $akcList $ndx $ndx]

}
}

typemethod akclist {} {
return $akcList

}
}

ARE THERE ANY LIMIT ATIONS ON DESTRUCTOR ARGUMENTS?
Yes; a destructor has no explicit arguments.

WHAT I MPLICIT ARGUMENTS ARE PASSED T O THE DESTRUCTOR?
The destructor gets the same implicit arguments that are passed toINSTANCE METHODS : type,
selfns, win, andself.

MUST COMPONENTS BE DESTROYED EXPLICITLY?
Yes and no.

Any Tk widgets created by asnit::widget or snit::widgetadaptor will be destroyed automatically by
Tk when the megawidget is destroyed, in keeping with normal Tk behavior (destroying a parent widget
destroys the whole tree).

Components of normalsnit::types, on the other hand, are never destroyed automatically, nor are non-
widget components of Snit megawidgets. Ifyour object creates them in its constructor, then it should
generally destroy them in its destructor.

IS THERE ANY SPECIAL ABOUT WRITING A DESTRUCTOR?
Yes. If an object’s constructor throws an error, the object’s destructor will be called to clean up; this
means that the object might not be completely constructed when the destructor is called. This can
cause the destructor to throw its own error; the result is usually misleading, confusing, and unhelpful.
Consequently, it’s important to write your destructor so that it’s fail-safe.

For example, adog might create atail component; the component will need to be destroyed. Butsup-
pose there’s an error while processing the creation options--the destructor will be called, and there will
be notail to destroy. Thesimplest solution is generally to catch and ignore any errors while destroying
components.

snit::type dog {
component tail

constructor {args} {

tcllib 2.2 24

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

$self configurelist $args

set tail [tail %AUTO%]
}

destructor {
catch {$tail destroy}

}
}

COMPONENTS
WHAT IS A COMPONENT?

Often an object will create and manage a number of other objects.A Snit megawidget, for example,
will often create a number of Tk widgets.These objects are part of the main object; it is composed of
them, so they are called components of the object.

But Snit also has a more precise meaning forCOMPONENT . The components of a Snit object are
those objects to which methods or options can be delegated. (SeeDELEGATION for more informa-
tion about delegation.)

HOW DO I D ECLARE A COMPONENT?
First, you must decide what role a component plays within your object, and give the role a name.
Then, you declare the component using its role name and thecomponentstatement. Thecomponent
statement declares aninstance variablewhich is used to store the component’s command name when
the component is created.

For example, suppose yourdogobject creates atail object (the better to wag with, no doubt):

snit::type dog {
component mytail

constructor {args} {
Create and save the component’s command
set mytail [tail %AUTO% -partof $self]
$self configurelist $args

}

method wag {} {
$mytail wag

}
}

As shown here, it doesn’t matter what thetail object’s real name is; thedog object refers to it by its
component name.

The above example shows one way to delegate thewag method to themytail component; seeDELE-
GATION for an easier way.

HOW IS A COMPONENT NAMED?
A component has two names. Thefirst name is that of the component variable; this represents the role
the component object plays within the Snit object.This is the component name proper, and is the name
used to refer to the component within Snit code.The second name is the name of the actual component
object created by the Snit object’s constructor. Thissecond name is always a Tcl command name, and
is referred to as the component’s object name.

In the example in the previous question, the component name ismytail ; themytail component’s object
name is chosen automatically by Snit since%AUTO% was used when the component object was cre-
ated.

tcllib 2.2 25

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

ARE THERE ANY LIMIT ATIONS ON COMPONENT NAMES?
Yes. snit::widget andsnit::widgetadaptor objects have a special component called thehull compo-
nent; thus, the namehull should be used for no other purpose.

Otherwise, since component names are in fact instance variable names they must follow the rules for
INSTANCE VARIABLES .

WHAT IS AN OWNED COMPONENT?
An ownedcomponent is a component whose object command’s lifetime is controlled by thesnit::type
or snit::widget.

As stated above, a component is an object to which our object can delegate methods or options.Under
this definition, our object will usually create its component objects, but not necessarily. Consider the
following: a dog object has a tail component; but tail knows that it’s part of the dog:

snit::type dog {
component mytail

constructor {args} {
set mytail [tail %AUTO% -partof $self]
$self configurelist $args

}

destructor {
catch {$mytail destroy}

}

delegate method wagtail to mytail as wag

method bark {} {
return "$self barked."

}
}

snit::type tail {
component mydog
option -partof -readonly yes

constructor {args} {
$self configurelist $args
set mydog $options(-partof)

}

method wag {} {
return "Wag, wag."

}

method pull {} {
$mydog bark

}
}

Thus, if you ask a dog to wag its tail, it tells its tail to wag; and if you pull the dog’s tail, the tail tells
the dog to bark. In this scenario, the tail is a component of the dog, and the dog is a component of the
tail, but the dog owns the tail and not the other way around.

WHAT DOES THE INSTALL COMMAND DO?
The install command creates an owned component using a specified command, and assigns the result
to the component’s instance variable. For example:

tcllib 2.2 26

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

snit::type dog {
component mytail

constructor {args} {
set mytail [tail %AUTO% -partof $self]
install mytail using tail %AUTO% -partof $self
$self configurelist $args

}
}

In a snit::type’s code, theinstall command shown above is equivalent to theset mytail command
that’s commented out.In a snit::widget’s or snit::widgetadaptor’s, code, however, the install com-
mand also queriesTHE TK OPTION D AT ABASE and initializes the new component’s options
accordingly. For consistency, it’s a good idea to get in the habit of usinginstall for all owned compo-
nents.

MUST OWNED COMPONENTS BE CREATED IN THE CONSTRUCTOR?
No, not necessarily.In fact, there’s no reason why an object can’t destroy and recreate a component
multiple times over its own lifetime.

ARE THERE ANY LIMIT ATIONS ON COMPONENT OBJECT NAMES?
Yes.

Component objects which are Tk widgets or megawidgets must have valid Tk window names.

Component objects which are not widgets or megawidgets must have fully-qualified command names,
i.e., names which include the full namespace of the command.Note that Snit always creates objects
with fully qualified names.

Next, the object names of components and owned by your object must be unique. This is no problem
for widget components, since widget names are always unique; but consider the following code:

snit::type tail { ... }

snit::type dog {
delegate method wag to mytail

constructor {} {
install mytail using tail mytail

}
}

This code uses the component name,mytail , as the component object name. This is not good, and
here’s why: Snit instance code executes in the Snit type’s namespace. Inthis case, themytail compo-
nent is created in the::dog:: namespace, and will thus have the name::dog::mytail .

Now, suppose you create two dogs. Bothdogs will attempt to create a tail called::dog::mytail . The
first will succeed, and the second will fail, since Snit won’t let you create an object if its name is
already a command. Here are two ways to avoid this situation:

First, if the component type is asnit::type you can specify%AUTO% as its name, and be guaranteed
to get a unique name. This is the safest thing to do:

install mytail using tail %AUTO%

If the component type isn’t a snit::type you can create the component in the object’s instance names-
pace:

install mytail using tail ${selfns}::mytail

Make sure you pick a unique name within the instance namespace.

tcllib 2.2 27

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

MUST I DESTROY THE COMPONENTS I OWN?
That depends. When a parent widget is destroyed, all child widgets are destroyed automatically. Thus,
if your object is asnit::widget or snit::widgetadaptor you don’t need to destroy any components that
are widgets, because they will generally be children or descendants of your megawidget.

If your object is an instance ofsnit::type, though, none of its owned components will be destroyed
automatically, nor will be non-widget components of asnit::widget be destroyed automatically.All
such owned components must be destroyed explicitly, or they won’t be destroyed at all.

CAN I EXPOSE A COMPONENT’S OBJECT COMMAND AS PAR T OF MY I NTERFACE?
Yes, and there are two ways to do it. The most appropriate way is usually to useDELEGATION .
Delegation allows you to pass the options and methods you specify along to particular components.
This effectively hides the components from the users of your type, and ensures good encapsulation.

However, there are times when it’s appropriate, not to mention simpler, just to make the entire compo-
nent part of your type’s public interface.

HOW DO I E XPOSE A COMPONENT’S OBJECT COMMAND?
When you declare the component, specify thecomponent statement’s-public option. Thevalue of
this option is the name of a method which will be delegated to your component’s object command.

For example, supposed you’ve written a combobox megawidget which owns a listbox widget, and you
want to make the listbox’s entire interface public.You can do it like this:

snit::widget combobox {
component listbox -public listbox

constructor {args} {
install listbox using listbox $win.listbox

}
}

combobox .mycombo
.mycombo listbox configure -width 30

Your comobox widget,.mycombo, now has alistbox method which has all of the same subcommands
as the listbox widget itself. Thus, the above code sets the listbox component’s width to 30.

Usually you’ll let the method name be the same as the component name; however, you can name it any-
thing you like.

TYPE COMPONENTS
WHAT IS A T YPE COMPONENT?

A type component is a component that belongs to the type itself instead of to a particular instance of
the type. The relationship between components and type components is the same as the relationship
betweenINSTANCE VARIABLES and TYPE VARIABLES . Both INSTANCE METHODS and
TYPE METHODS can be delegated to type components.

Once you understandCOMPONENTS and DELEGATION , type components are just more of the
same.

HOW DO I D ECLARE A TYPE COMPONENT?
Declare a type component using thetypecomponentstatement. Ittakes the same options (-inherit and
-public) as the componentstatement does, and defines a type variable to hold the type component’s
object command.

Suppose in your model you’ve got many dogs, but only one veterinarian. You might make the veteri-
narian a type component.

snit::type veterinarian { ... }

snit::type dog {
typecomponent vet

tcllib 2.2 28

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

...
}

HOW DO I I NSTALL A TYPE COMPONENT?
Just use thesetcommand to assign the component’s object command to the type component.Because
types (even snit::widget types) are not widgets, and do not have options anyway, the extra features of
the install command are not needed.

You’ll usually install type components in the type constructor, as shown here:

snit::type veterinarian { ... }

snit::type dog {
typecomponent vet

typeconstructor {
set vet [veterinarian %AUTO%]

}
}

ARE THERE ANY LIMIT ATIONS ON TYPE COMPONENT NAMES?
Yes, the same as onINSTANCE VARIABLES , TYPE VARIABLES , and normalCOMPONENTS.

DELEGATION
WHAT IS DELEGATION?

Delegation, simply put, is when you pass a task you’ve been given to one of your assistants.(You do
have assistants, don’t you?) Snitobjects can do the same thing.The following example shows one
way in which thedog object can delegate itswag method and its-taillength option to itstail compo-
nent.

snit::type dog {
variable mytail

option -taillength -configuremethod SetTailOption -cgetmethod GetTailOption

method SetTailOption {option value} {
$mytail configure $option $value

}

method GetTailOption {option} {
$mytail cget $option

}

method wag {} {
$mytail wag

}

constructor {args} {
install mytail using tail %AUTO% -partof $self
$self configurelist $args

}

}

This is the hard way to do it, by it demonstrates what delegation is all about. See the following answers
for the easy way to do it.

Note that the constructor calls theconfigurelist methodafter it creates itstail ; otherwise, if-taillength

tcllib 2.2 29

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

appeared in the list ofargswe’d get an error.

HOW CAN I DELEGATE A METHOD T O A COMPONENT OBJECT?
Delegation occurs frequently enough that Snit makes it easy. Any method can be delegated to any com-
ponent or type component by placing a singledelegatestatement in the type definition.(SeeCOM-
PONENTS andTYPE COMPONENTS for more information about component names.)

For example, here’s a much better way to delegate thedogobject’swagmethod:

% snit::type dog {
delegate method wag to mytail

constructor {} {
install mytail using tail %AUTO%

}
}
::dog
% snit::type tail {

method wag {} { return "Wag, wag, wag."}
}
::tail
% dog spot
::spot
% spot wag
Wag, wag, wag.

This code has the same effect as the code shown under the previous question: when adog’s wag
method is called, the call and its arguments are passed along automatically to thetail object.

Note that when a component is mentioned in adelegatestatement, the component’s instance variable is
defined implicitly. However, it’s still good practice to declare it explicitly using thecomponentstate-
ment.

Note also that you can define a method name using themethod statement, or you can define it using
delegate; you can’t do both.

CAN I DELEGATE T O A M ETHOD WITH A DIFFERENT NAME?
Suppose you wanted to delegate thedog’s wagtail method to thetail ’s wag method. Afterall you wag
the tail, not the dog. It’s easily done:

snit::type dog {
delegate method wagtail to mytail as wag

constructor {args} {
install mytail using tail %AUTO% -partof $self
$self configurelist $args

}
}

CAN I DELEGATE T O A M ETHOD WITH ADDITIONAL ARGUMENTS?
Suppose thetail ’s wag method takes as an argument the number of times the tail should be wagged.
You want to delegate thedog’s wagtail method to thetail ’s wag method, specifying that the tail should
be wagged exactly three times. This is easily done, too:

snit::type dog {
delegate method wagtail to mytail as {wag 3}
...

}

snit::type tail {
method wag {count} {

tcllib 2.2 30

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

return [string repeat "Wag " $count]
}
...

}

CAN I DELEGATE A METHOD T O SOMETHING OTHER THAN AN OBJECT?
Normal method delegation assumes that you’re delegating a method (a subcommand of an object com-
mand) to a method of another object (a subcommand of a different object command). But not all Tcl
objects follow Tk conventions, and not everything you’d to which you’d like to delegate a method is
necessary an object.Consequently, Snit makes it easy to delegate a method to pretty much anything
you like using thedelegatestatement’susingclause.

Suppose your dog simulation stores dogs in a database, each dog as a single record.The database API
you’re using provides a number of commands to manage records; each takes the record ID (a string you
choose) as its first argument. For example,saverec saves a record. Ifyou let the record ID be the name
of the dog object, you can delegate the dog’ssavemethod to thesaverec command as follows:

snit::type dog {
delegate method save using {saverec %s}

}

The %s is replaced with the instance name when thesave method is called; any additional arguments
are the appended to the resulting command.

The using clause understands a number of other %-conversions; in addition to the instance name, you
can substitute in the method name (%m), the type name (%t), the instance namespace (%n), the Tk
window name (%w), and, if a component or typecomponent name was given in thedelegatestatement,
the component’s object command (%c).

HOW CAN I DELEGATE A METHOD T O A TYPE COMPONENT OBJECT?
Just exactly as you would to a component object.Thedelegate methodstatement accepts both compo-
nent and type component names in itsto clause.

HOW CAN I DELEGATE A TYPE METHOD T O A TYPE COMPONENT OBJECT?
Use thedelegate typemethodstatement. Itworks like delegate method, with these differences: first,
it defines a type method instead of an instance method; second, theusing clause ignores the%s, %n ,
and%w %-conversions.

Naturally, you can’t delegate a type method to an instance component...Snit wouldn’t know which
instance should receive it.

HOW CAN I DELEGATE AN OPTION T O A COMPONENT OBJECT?
The first question in this section (seeDELEGATION) shows one way to delegate an option to a com-
ponent; but this pattern occurs often enough that Snit makes it easy.For example, every tail object has
a -length option; we want to allow the creator of adogobject to set the tail’s length. We can do this:

% snit::type dog {
delegate option -length to mytail

constructor {args} {
install mytail using tail %AUTO% -partof $self
$self configurelist $args

}
}
::dog
% snit::type tail {

option -partof
option -length 5

}
::tail
% dog spot -length 7

tcllib 2.2 31

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

::spot
% spot cget -length
7

This produces nearly the same result as the-configuremethodand-cgetmethodshown under the first
question in this section: whenever a dog object’s-length option is set or retrieved, the underlyingtail
object’s option is set or retrieved in turn.

Note that you can define an option name using theoption statement, or you can define it usingdele-
gate; you can’t do both.

CAN I DELEGATE T O AN OPTION WITH A DIFFERENT NAME?
In the previous answer we delegated thedog’s -length option down to itstail . This is, of course,
wrong. Thedog has a length, and the tail has a length, and they are different. Whatwe’d really like to
do is give thedoga -taillength option, but delegate it to thetail ’s -length option:

snit::type dog {
delegate option -taillength to mytail as -length

constructor {args} {
set mytail [tail %AUTO% -partof $self]
$self configurelist $args

}
}

HOW CAN I DELEGATE ANY UNRECOGNIZED METHOD OR OPTION T O A COMPONENT
OBJECT?
It may happen that a Snit object gets most of its behavior from one of its components. This often hap-
pens withsnit::widgetadaptors, for example, where we wish to slightly the modify the behavior of an
existing widget. To carry on with ourdog example, however, suppose that we have asnit::type called
animal that implements a variety of animal behaviors--moving, eating, sleeping, and so forth.We want
our dog objects to inherit these same behaviors, while adding dog-like behaviors of its own. Here’s
how we can give adog methods and options of its own while delegating all other methods and options
to itsanimal component:

snit::type dog {
delegate option * to animal
delegate method * to animal

option -akc 0

constructor {args} {
install animal using animal %AUTO% -name $self
$self configurelist $args

}

method wag {} {
return "$self wags its tail"

}
}

That’s it. A dog is now an animal that has a-akc option and canwag its tail.

Note that we don’t need to specify the full list of method names or option names thatanimal will
receive. It gets anything dog doesn’t recognize--and if it doesn’t recognize it either, it will simply
throw an error, just as it should.

You can also delegate all unknown type methods to a type component usingdelegate typemethod *.

tcllib 2.2 32

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

HOW CAN I DELEGATE ALL BUT CER TAIN METHODS OR OPTIONS T O A COMPONENT?
In the previous answer, we said that every dog is ananimal by delegating all unknown methods and
options to theanimal component. But what if theanimal type has some methods or options that we’d
like to suppress?

One solution is to explicitly delegate all the options and methods, and forgo the convenience ofdele-
gate method * and delegate option *. But if we wish to suppress only a few options or methods,
there’s an easier way:

snit::type dog {
delegate option * to animal except -numlegs
delegate method * to animal except {fly climb}

...

constructor {args} {
install animal using animal %AUTO% -name $self -numlegs 4
$self configurelist $args

}

...
}

Dogs have four legs, so we specify that explicitly when we create theanimal component, and explicitly
exclude-numlegs from the set of delegated options.Similarly, dogs can neitherfly nor climb, so we
exclude thoseanimal methods as shown.

CAN A HIERARCHICAL METHOD BE DELEGATED?
Yes; just specify multiple words in the delegated method’s name:

snit::type tail {
method wag {} {return "Wag, wag"}
method droop {} {return "Droop, droop"}

}

snit::type dog {
delegate method {tail wag} to mytail
delegate method {tail droop} to mytail

...

constructor {args} {
install mytail using tail %AUTO%
$self configurelist $args

}

...
}

Unrecognized hierarchical methods can also be delegated; the following code delegates all subcom-
mands of the "tail" method to the "mytail" component:

snit::type dog {
delegate method {tail *} to mytail

...
}

tcllib 2.2 33

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

WIDGETS
WHAT IS A SNIT::WIDGET?

A snit::widget is the Snit version of what Tcl programmers usually call amegawidget: a widget-like
object usually consisting of one or more Tk widgets all contained within a Tk frame.

A snit::widget is also a special kind ofsnit::type. Just about everything in this FAQ list that relates to
snit::types also applies tosnit::widgets.

HOW DO I D EFINE A SNIT::WIDGET?
snit::widgets are defined using thesnit::widget command, just assnit::types are defined by the
snit::type command.

The body of the definition can contain all of the same kinds of statements, plus a couple of others
which will be mentioned below.

HOW DO SNIT::WIDGETS DIFFER FROM SNIT::TYPES?
• The name of an instance of asnit::type can be any valid Tcl command name, in any names-

pace. Thename of an instance of asnit::widget must be a valid Tk widget name, and its par-
ent widget must already exist.

• An instance of asnit::type can be destroyed by calling itsdestroy method. Instancesof a
snit::widget have no destroy method; use the Tkdestroycommand instead.

• Every instance of asnit::widget has one predefined component called itshull component.
The hull is usually a Tkframe or toplevel widget; any other widgets created as part of the
snit::widget will usually be contained within the hull.

• snit::widgets can have their options receive default values fromTHE TK OPTION D AT A -
BASE.

WHAT IS A H ULL COMPONENT?
Snit can’t create a Tk widget object; only Tk can do that. Thus, every instance of asnit::widget must
be wrapped around a genuine Tk widget; this Tk widget is called thehull component. Snit effectively
piggybacks the behavior you define (methods, options, and so forth) on top of the hull component so
that the whole thing behaves like a standard Tk widget.

For snit::widgets the hull component must be a Tk widget that defines the-classoption.

snit::widgetadaptors differ from snit::widgets chiefly in that any kind of widget can be used as the
hull component; seeWIDGET ADAPTORS .

HOW CAN I SET THE HULL TYPE FOR A SNIT::WIDGET?
A snit::widget’s hull component will usually be a Tkframe widget; however, it may be any Tk widget
that defines the-classoption. You can explicitly choose the hull type you prefer by including thehull-
type command in the widget definition:

snit::widget mytoplevel {
hulltype toplevel

...
}

If no hulltype command appears, the hull will be aframe.

By default, Snit recognizes the following hull types: the Tk widgetsframe, labelframe, toplevel, and
the Tile widgetsttk::frame , ttk::labelframe , and ttk::tople vel. To enable the use of some other kind
of widget as the hull type, you canlappend the widget command to the variable snit::hulltypes
(always provided the widget defines the-classoption. For example, suppose Tk gets a new widget type
called aprettyframe :

lappend snit::hulltypes prettyframe

snit::widget mywidget {
hulltype prettyframe

tcllib 2.2 34

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

...
}

HOW SHOULD I NAME WIDGETS WHICH ARE COMPONENTS OF A SNIT::WIDGET?
Every widget, whether a genuine Tk widget or a Snit megawidget, has to have a valid Tk window
name. Whena snit::widget is first created, its instance name,self, is a Tk window name; however, if
the snit::widget is used as the hull component by asnit::widgetadaptor its instance name will be
changed to something else.For this reason, every snit::widget method, constructor, destructor, and so
forth is passed another implicit argument,win, which is the window name of the megawidget. Any
children should be named usingwin as the root.

Thus, suppose you’re writing a toolbar widget, a frame consisting of a number of buttons placed side-
by-side. Itmight look something like this:

snit::widget toolbar {
delegate option * to hull

constructor {args} {
button $win.open -text Open -command [mymethod open]
button $win.save -text Save -command [mymethod save]

....

$self configurelist $args

}
}

See also the question on renaming objects, toward the top of this file.

WIDGET ADAPTORS
WHAT IS A SNIT::WIDGETADAPTOR?

A snit::widgetadaptor is a kind ofsnit::widget. Whereas asnit::widget’s hull is automatically cre-
ated and is always a Tk frame, asnit::widgetadaptor can be based on any Tk widget--or on any Snit
megawidget, or even (with luck) on megawidgets defined using some other package.

It’s called awidget adaptorbecause it allows you to take an existing widget and customize its behavior.

HOW DO I D EFINE A SNIT::WIDGETADAPTOR?
Use thesnit::widgetadaptor command. Thedefinition for asnit::widgetadaptor looks just like that
for asnit::type or snit::widget, except that the constructor must create and install the hull component.

For example, the following code creates a read-only text widget by the simple device of turning its
insert anddeletemethods into no-ops. Then, we define new methods,ins anddel, which get delegated
to the hull component asinsert and delete. Thus, we’ve adapted the text widget and given it new
behavior while still leaving it fundamentally a text widget.

::snit::widgetadaptor rotext {

constructor {args} {
Create the text widget; turn off i ts insert cursor
installhull using text -insertwidth 0

Apply any options passed at creation time.
$self configurelist $args

}

Disable the text widget’s insert and delete methods, to
make this readonly.
method insert {args} {}

tcllib 2.2 35

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

method delete {args} {}

Enable ins and del as synonyms, so the program can insert and
delete.
delegate method ins to hull as insert
delegate method del to hull as delete

Pass all other methods and options to the real text widget, so
that the remaining behavior is as expected.
delegate method * to hull
delegate option * to hull

}

The most important part is in the constructor.Whereassnit::widget creates the hull for you,snit::wid-
getadaptor cannot -- it doesn’t know what kind of widget you want. Sothe first thing the constructor
does is create the hull component (a Tk text widget in this case), and then installs it using theinstall-
hull command.

Note:There is no instance command until you create one by installing a hull component.Any attempt
to pass methods to$selfprior to callinginstallhull will fail.

CAN I ADAPT A WIDGET CREATED ELSEWHERE IN THE PROGRAM?
Yes.

At times, it can be convenient to adapt a pre-existing widget instead of creating your own. For exam-
ple, the BwidgetPagesManagerwidget manages a set offrame widgets, only one of which is visible
at a time.The application chooses whichframe is visible. All of the Theseframes are created by the
PagesManageritself, using itsadd method. It’s convenient to adapt these frames to do what we’d like
them to do.

In a case like this, the Tk widget will already exist when thesnit::widgetadaptor is created. Snit pro-
vides an alternate form of theinstallhull command for this purpose:

snit::widgetadaptor pageadaptor {
constructor {args} {

The widget already exists; just install it.
installhull $win

...
}

}

CAN I ADAPT ANOTHER MEGAWIDGET?
Maybe. If the other megawidget is asnit::widget or snit::widgetadaptor, then yes. If it isn’t then,
again, maybe.You’ll have to try it and see.You’re most likely to have trouble with widget destruc-
tion--you have to make sure that your megawidget code receives the <Destroy> ev ent before the
megawidget you’re adapting does.

THE TK OPTION D AT ABASE
WHAT IS THE TK OPTION D AT ABASE?

The Tk option database is a database of default option values maintained by Tk itself; every Tk applica-
tion has one. The concept of the option database derives from something called the X Windows
resource database; however, the option database is available in every Tk implementation, including
those which do not use the X Windows system (e.g., Microsoft Windows).

Full details about the Tk option database are beyond the scope of this document; bothPractical Pro-
gramming in Tcl and Tkby Welch, Jones, and Hobbs, andEffective Tcl/Tk Programmingby Harrison
and McClennan., have good introductions to it.

Snit is implemented so that most of the time it will simply do the right thing with respect to the option
database, provided that the widget developer does the right thing by Snit. The body of this section goes

tcllib 2.2 36

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

into great deal about what Snit requires. The following is a brief statement of the requirements, for ref-
erence.

• If the widget’s default widget class is not what is desired, set it explicitly using thewidget-
classstatement in the widget definition.

• When defining or delegating options, specify the resource and class names explicitly when
necessary.

• Use theinstallhull using command to create and install the hull forsnit::widgetadaptors.

• Use theinstall command to create and install all components which are widgets.

• Use theinstall command to create and install components which aren’t widgets if you’d like
them to receive option values from the option database.

The interaction of Tk widgets with the option database is a complex thing; the interaction of Snit with
the option database is even more so, and repays attention to detail.

DO SNIT::TYPES USE THE TK OPTION D AT ABASE?
No, they don’t; querying the option database requires a Tk window name, andsnit::types don’t hav e
one.

If you create an instance of asnit::type as a component of asnit::widget or snit::widgetadaptor, on
the other hand, and if any options are delegated to the component, and if you useinstall to create and
install it, then the megawidget will query the option database on thesnit::type’s behalf. Thismight or
might not be what you want, so take care.

WHAT IS MY SNIT::WIDGET’S WIDGET CLASS?
Every Tk widget has a "widget class": a name that is used when adding option settings to the database.
For Tk widgets, the widget class is the same as the widget command name with an initial capital.For
example, the widget class of the Tkbutton widget isButton.

Similarly, the widget class of asnit::widget defaults to the unqualified type name with the first letter
capitalized. For example, the widget class of

snit::widget ::mylibrary::scrolledText { . .. }

is ScrolledText.

The widget class can also be set explicitly using thewidgetclassstatement within thesnit::widget defi-
nition:

snit::widget ::mylibrary::scrolledText {
widgetclass Text

...
}

The above definition says that ascrolledText megawidget has the same widget class as an ordinarytext
widget. Thismight or might not be a good idea, depending on how the rest of the megawidget is
defined, and how its options are delegated.

WHAT IS MY SNIT::WIDGETADAPTOR’S WIDGET CLASS?
The widget class of asnit::widgetadaptor is just the widget class of its hull widget; Snit has no con-
trol over this.

Note that the widget class can be changed only forframe andtoplevel widgets, which is why these are
the valid hull types forsnit::widgets.

Try to usesnit::widgetadaptors only to make small modifications to another widget’s behavior. Then,
it will usually not make sense to change the widget’s widget class anyway.

WHAT ARE OPTION RESOURCE AND CLASS NAMES?
Every Tk widget option has three names: the option name, the resource name, and the class name.The
option name begins with a hyphen and is all lowercase; it’s used when creating widgets, and with the

tcllib 2.2 37

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

configureandcgetcommands.

The resource and class names are used to initialize option default values by querying the option data-
base. Theresource name is usually just the option name minus the hyphen, but may contain uppercase
letters at word boundaries; the class name is usually just the resource name with an initial capital, but
not always. For example, here are the option, resource, and class names for several Tk text widget
options:

-background background Background
-borderwidth borderWidth BorderWidth
-insertborderwidth insertBorderWidth BorderWidth
-padx padX Pad

As is easily seen, sometimes the resource and class names can be inferred from the option name, but
not always.

WHAT ARE THE RESOURCE AND CLASS NAMES FOR MY MEGAWIDGET’S OPTIONS?
For options implicitly delegated to a component usingdelegate option *, the resource and class names
will be exactly those defined by the component.Theconfiguremethod returns these names, along with
the option’s default and current values:

% snit::widget mytext {
delegate option * to text

constructor {args} {
install text using text .text
...

}

...
}
::mytext
% mytext .text
.text
% .text configure -padx
-padx padX Pad 1 1
%

For all other options (whether locally defined or explicitly delegated), the resource and class names can
be defined explicitly, or they can be allowed to have default values.

By default, the resource name is just the option name minus the hyphen; the the class name is just the
option name with an initial capital letter.For example, suppose we explicitly delegate "-padx":

% snit::widget mytext {
option -myvalue 5

delegate option -padx to text
delegate option * to text

constructor {args} {
install text using text .text
...

}

...
}
::mytext
% mytext .text
.text

tcllib 2.2 38

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

% .text configure -myvalue
-myvalue myvalue Myvalue 5 5
% .text configure -padx
-padx padx Padx 1 1
%

Here the resource and class names are chosen using the default rules. Often these rules are sufficient,
but in the case of "-padx" we’d most likely prefer that the option’s resource and class names are the
same as for the built-in Tk widgets. This is easily done:

% snit::widget mytext {
delegate option {-padx padX Pad} to text

...
}
::mytext
% mytext .text
.text
% .text configure -padx
-padx padX Pad 1 1
%

HOW DOES SNIT INITIALIZE MY MEGAWIDGET’S LOCALL Y-DEFINED OPTIONS?
The option database is queried for each of the megawidget’s locally-defined options, using the option’s
resource and class name. If the result isn’t "", then it replaces the default value given in widget defini-
tion. Ineither case, the default can be overridden by the caller.For example,

option add *Mywidget.texture pebbled

snit::widget mywidget {
option -texture smooth
...

}

mywidget .mywidget -texture greasy

Here,-texture would normally default to "smooth", but because of the entry added to the option data-
base it defaults to "pebbled".However, the caller has explicitly overridden the default, and so the new
widget will be "greasy".

HOW DOES SNIT INITIALIZE DELEGATED OPTIONS?
That depends on whether the options are delegated to the hull, or to some other component.

HOW DOES SNIT INITIALIZE OPTIONS DELEGATED T O THE HULL?
A snit::widget’s hull is a widget, and given that its class has been set it is expected to query the option
database for itself. The only exception concerns options that are delegated to it with a different name.
Consider the following code:

option add *Mywidget.borderWidth 5
option add *Mywidget.relief sunken
option add *Mywidget.hullbackground red
option add *Mywidget.background green

snit::widget mywidget {
delegate option -borderwidth to hull
delegate option -hullbackground to hull as -background
delegate option * to hull
...

}

tcllib 2.2 39

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

mywidget .mywidget

set A [.mywidget cget -relief]
set B [.mywidget cget -hullbackground]
set C [.mywidget cget -background]
set D [.mywidget cget -borderwidth]

The question is, what are the values of variables A, B, C and D?

The value of A is "sunken". Thehull is a Tk frame which has been given the widget classMywidget;
it will automatically query the option database and pick up this value. Sincethe -relief option is
implicitly delegated to the hull, Snit takes no action.

The value of B is "red".The hull will automatically pick up the value "green" for its-background
option, just as it picked up the-relief value. However, Snit knows that-hullbackground is mapped to
the hull’s -background option; hence, it queries the option database for-hullbackground and gets
"red" and updates the hull accordingly.

The value of C is also "red", because-background is implicitly delegated to the hull; thus, retrieving it
is the same as retrieving -hullbackground. Note that this case is unusual; the-background option
should probably have been excluded using the delegate statement’s exceptclause, or (more likely) del-
eg ated to some other component.

The value of D is "5", but not for the reason you think.Note that as it is defined above, the resource
name for-borderwidth defaults toborderwidth , whereas the option database entry isborderWidth ,
in accordance with the standard Tk naming for this option. As with-relief, the hull picks up its own
-borderwidth option before Snit does anything. Becausethe option is delegated under its own name,
Snit assumes that the correct thing has happened, and doesn’t worry about it any further. To avoid con-
fusion, the-borderwidth option should have been delegated like this:

delegate option {-borderwidth borderWidth BorderWidth} to hull

For snit::widgetadaptors, the case is somewhat altered.Widget adaptors retain the widget class of
their hull, and the hull is not created automatically by Snit.Instead, thesnit::widgetadaptor must call
installhull in its constructor. The normal way to do this is as follows:

snit::widgetadaptor mywidget {
...
constructor {args} {

...
installhull using text -foreground white
...

}
...

}

In this case, theinstallhull command will create the hull using a command like this:

set hull [text $win -foreground white]

The hull is atext widget, so its widget class isText. Just as withsnit::widget hulls, Snit assumes that
it will pick up all of its normal option values automatically, without help from Snit. Options delegated
from a different name are initialized from the option database in the same way as described above.

In earlier versions of Snit,snit::widgetadaptors were expected to callinstallhull like this:

installhull [text $win -foreground white]

This form still works--but Snit will not query the option database as described above.

tcllib 2.2 40

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

HOW DOES SNIT INITIALIZE OPTIONS DELEGATED T O OTHER COMPONENTS?
For hull components, Snit assumes that Tk will do most of the work automatically. Non-hull compo-
nents are somewhat more complicated, because they are matched against the option database twice.

A component widget remains a widget still, and is therefore initialized from the option database in the
usual way. A text widget remains atext widget whether it is a component of a megawidget or not, and
will be created as such.

But then, the option database is queried for all options delegated to the component, and the component
is initialized accordingly--provided that theinstall command is used to create it.

Before option database support was added to Snit, the usual way to create a component was to simply
create it in the constructor and assign its command name to the component variable:

snit::widget mywidget {
delegate option -background to myComp

constructor {args} {
set myComp [text $win.text -foreground black]

}
}

The drawback of this method is that Snit has no opportunity to initialize the component properly.
Hence, the following approach is now used:

snit::widget mywidget {
delegate option -background to myComp

constructor {args} {
install myComp using text $win.text -foreground black

}
}

The install command does the following:

• Builds a list of the options explicitly included in theinstall command--in this case,-fore-
ground.

• Queries the option database for all options delegated explicitly to the named component.

• Creates the component using the specified command, after inserting into it a list of options and
values read from the option database. Thus, the explicitly included options (like -foreground)
will override anything read from the option database.

• If the widget definition implicitly delegated options to the component usingdelegate option *,
then Snit calls the newly created component’s configure method to receive a list of all of the
component’s options. Fromthis Snit builds a list of options implicitly delegated to the compo-
nent which were not explicitly included in theinstall command. For all such options, Snit
queries the option database and configures the component accordingly.

You don’t really need to know all of this; just useinstall to install your components, and Snit will try to
do the right thing.

WHAT HAPPENS IF I INSTALL A NON-WIDGET AS A COMPONENT OF WIDGET?
A snit::type never queries the option database.However, asnit::widget can have non-widget compo-
nents. Andif options are delegated to those components, and if theinstall command is used to install
those components, then they will be initialized from the option database just as widget components are.

However, when used within a megawidget, install assumes that the created component uses a reason-
ably standard widget-like creation syntax. If it doesn’t, don’t useinstall.

ENSEMBLE COMMANDS

tcllib 2.2 41

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

WHAT IS AN ENSEMBLE COMMAND?
An ensemble command is a command with subcommands.Snit objects are all ensemble commands;
however, the term more usually refers to commands like the standard Tcl commandsstring, file, and
clock. In a sense, these are singleton objects--there’s only one instance of them.

HOW CAN I CREATE AN ENSEMBLE COMMAND USING SNIT?
There are two ways--as asnit::type, or as an instance of asnit::type.

HOW CAN I CREATE AN ENSEMBLE COMMAND USING AN INSTANCE OF A SNIT::TYPE?
Define a type whoseINSTANCE METHODS are the subcommands of your ensemble command.
Then, create an instance of the type with the desired name.

For example, the following code usesDELEGATION to create a work-alike for the standardstring
command:

snit::type ::mynamespace::mystringtype {
delegate method * to stringhandler

constructor {} {
set stringhandler string

}
}

::mynamespace::mystringtype mystring

We create the type in a namespace, so that the type command is hidden; then we create a single
instance with the desired name--mystring, in this case.

This method has two drawbacks. First,it leaves the type command floating about.More seriously,
your shiny new ensemble command will have info anddestroy subcommands that you probably have
no use for. But read on.

HOW CAN I CREATE AN ENSEMBLE COMMAND USING A SNIT::TYPE?
Define a type whoseTYPE METHODS are the subcommands of your ensemble command.

For example, the following code usesDELEGATION to create a work-alike for the standardstring
command:

snit::type mystring {
delegate typemethod * to stringhandler

typeconstructor {
set stringhandler string

}
}

Now the type command itself is your ensemble command.

This method has only one drawback, and though it’s major, it’s also surmountable.Your new ensemble
command will have create, info anddestroy subcommands you don’t want. Andworse yet, since the
create method can be implicit, users of your command will accidentally be creating instances of your
mystring type if they should mispell one of the subcommands. The command will succeed--the first
time--but won’t do what’s wanted. Thisis very bad.

The work around is to set somePRAGMAS, as shown here:

snit::type mystring {
pragma -hastypeinfo no
pragma -hastypedestroy no
pragma -hasinstances no

delegate typemethod * to stringhandler

tcllib 2.2 42

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

typeconstructor {
set stringhandler string

}
}

Here we’ve used thepragma statement to tell Snit that we don’t want theinfo typemethod or the
destroy typemethod, and that our type has no instances; this eliminates thecreate typemethod and all
related code.As a result, our ensemble command will be well-behaved, with no unexpected subcom-
mands.

PRAGMAS
WHAT IS A PRAGMA?

A pragma is an option you can set in your type definitions that affects how the type is defined and how
it works once it is defined.

HOW DO I SET A PRAGMA?
Use thepragma statement. Eachpragma is an option with a value; each time you use thepragma
statement you can set one or more of them.

HOW CAN I GET RID OF THE INFO" TYPE METHOD?"
Set the-hastypeinfopragma tono:

snit::type dog {
pragma -hastypeinfo no
...

}

Snit will refrain from defining theinfo type method.

HOW CAN I GET RID OF THE DESTR OY" T YPE METHOD?"
Set the-hastypedestroypragma tono:

snit::type dog {
pragma -hastypedestroy no
...

}

Snit will refrain from defining thedestroy type method.

HOW CAN I GET RID OF THE CREATE" TYPE METHOD?"
Set the-hasinstancespragma tono:

snit::type dog {
pragma -hasinstances no
...

}

Snit will refrain from defining thecreate type method; if you call the type command with an unknown
method name, you’ll get an error instead of a new instance of the type.

This is useful if you wish to use asnit::type to define an ensemble command rather than a type with
instances.

Pragmas-hastypemethodsand-hasinstancescannot both be false (or there’d be nothing left).

HOW CAN I GET RID OF TYPE METHODS AL TOGETHER?
Normal Tk widget type commands don’t hav e subcommands; all they do is create widgets--in Snit
terms, the type command calls thecreate type method directly.To get the same behavior from Snit, set
the-hastypemethodspragma tono:

snit::type dog {
pragma -hastypemethods no

tcllib 2.2 43

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

#...
}

Creates ::spot
dog spot

Tries to create an instance called ::create
dog create spot

Pragmas-hastypemethodsand-hasinstancescannot both be false (or there’d be nothing left).

WHY CAN’T I CREATE AN OBJECT THA T REPLACES AN OLD OBJECT WITH THE SAME
NAME?
Up until Snit 0.95, you could use any name for an instance of asnit::type, even if the name was
already in use by some other object or command.You could do the following, for example:

snit::type dog { ... }

dog proc

You now hav ea new dog named "proc", which is probably not something that you really wanted to do.
As a result, Snit now throws an error if your chosen instance name names an existing command.To
restore the old behavior, set the-canreplacepragma toyes:

snit::type dog {
pragma -canreplace yes
...

}

HOW CAN I MAKE MY SIMPLE TYPE RUN FASTER?
In Snit 1.x, you can set the-simpledispatchpragma toyes.

Snit 1.x method dispatch is both flexible and fast, but the flexibility comes with a price.If your type
doesn’t require the flexibility , the -simpledispatchpragma allows you to substitute a simpler dispatch
mechanism that runs quite a bit faster. Thelimitations are these:

• Methods cannot be delegated.

• uplevel andupvar do not work as expected: the caller’s scope is two lev els up rather than one.

• The option-handling methods (cget, configure, andconfigurelist) are very slightly slower.

In Snit 2.2, the-simpledispatchmacro is obsolete, and ignored; all Snit 2.2 method dispatch is faster
than Snit 1.x’s-simpledispatch.

MACROS
WHAT IS A M ACRO?

A Snit macro is nothing more than a Tcl proc that’s defined in the Tcl interpreter used to compile Snit
type definitions.

WHAT ARE MACROS GOOD FOR?
You can use Snit macros to define new type definition syntax, and to support conditional compilation.

HOW DO I DO C ONDITIONAL COMPILATION?
Suppose you want your type to use a fast C extension if it’s available; otherwise, you’ll fallback to a
slower Tcl implementation.You want to define one set of methods in the first case, and another set in
the second case.But how can your type definition know whether the fast C extension is available or
not?

It’s easily done. Outside of any type definition, define a macro that returns 1 if the extension is avail-
able, and 0 otherwise:

tcllib 2.2 44

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

if {$gotFastExtension} {
snit::macro fastcode {} {return 1}

} else {
snit::macro fastcode {} {return 0}

}

Then, use your macro in your type definition:

snit::type dog {

if {[fastcode]} {
Fast methods
method bark {} {...}
method wagtail {} {...}

} else {
Slow methods
method bark {} {...}
method wagtail {} {...}

}
}

HOW DO I D EFINE NEW TYPE DEFINITION SYNTAX?
Use a macro.For example, yoursnit::widget’s -background option should be propagated to a number
of component widgets.You could implement that like this:

snit::widget mywidget {
option -background -default white -configuremethod PropagateBackground

method PropagateBackground {option value} {
$comp1 configure $option $value
$comp2 configure $option $value
$comp3 configure $option $value

}
}

For one option, this is fine; if you’ve got a number of options, it becomes tedious and error prone.So
package it as a macro:

snit::macro propagate {option "to" components} {
option $option -configuremethod Propagate$option

set body "\n"

foreach comp $components {
append body "\$$comp configure $option \$value\n"

}

method Propagate$option {option value} $body
}

Then you can use it like this:

snit::widget mywidget {
option -background default -white
option -foreground default -black

tcllib 2.2 45

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

snitfaq(3tcl) Snit’s Not Incr Tcl, OO system snitfaq(3tcl)

propagate -background to {comp1 comp2 comp3}
propagate -foreground to {comp1 comp2 comp3}

}

ARE THERE ARE RESTRICTIONS ON MACR O NAMES?
Yes, there are.You can’t redefine any standard Tcl commands or Snit type definition statements.You
can use any other command name, including the name of a previously defined macro.

If you’re using Snit macros in your application, go ahead and name them in the global namespace, as
shown above. But if you’re using them to define types or widgets for use by others, you should define
your macros in the same namespace as your types or widgets.That way, they won’t conflict with other
people’s macros.

If my fancysnit::widget is called::mylib::mywidget , for example, then I should define mypropagate
macro as::mylib::propagate :

snit::macro mylib::propagate {option "to" components} { ... }

snit::widget ::mylib::mywidget {
option -background default -white
option -foreground default -black

mylib::propagate -background to {comp1 comp2 comp3}
mylib::propagate -foreground to {comp1 comp2 comp3}

}

BUGS, IDEAS, FEEDBACK
This document, and the package it describes, will undoubtedly contain bugs and other problems.
Please report such in the category snit of theTcllib Track ers [http://core.tcl.tk/tcllib/reportlist]. Please
also report any ideas for enhancements you may have for either package and/or documentation.

When proposing code changes, please provideunified diffs, i.e the output ofdiff -u .

Note further thatattachmentsare strongly preferred over inlined patches. Attachments can be made by
going to theEdit form of the ticket immediately after its creation, and then using the left-most button
in the secondary navigation bar.

KEYWORDS
BWidget, C++, Incr Tcl, adaptors, class, mega widget, object, object oriented, widget, widget adaptors

CATEGORY
Programming tools

COPYRIGHT
Copyright (c) 2003-2006, by William H. Duquette

tcllib 2.2 46

man.m.sourcentral.orgUbuntu 20.10 (Groovy Gorilla)

https://man.m.sourcentral.org/ubuntu2010/3+snitfaq

